2022年浙江省台州市黄岩宁溪中学高二数学文月考试题含解析_第1页
2022年浙江省台州市黄岩宁溪中学高二数学文月考试题含解析_第2页
2022年浙江省台州市黄岩宁溪中学高二数学文月考试题含解析_第3页
2022年浙江省台州市黄岩宁溪中学高二数学文月考试题含解析_第4页
2022年浙江省台州市黄岩宁溪中学高二数学文月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年浙江省台州市黄岩宁溪中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为(

)A. B. C.2 D.4参考答案:A【考点】椭圆的简单性质.【专题】计算题;待定系数法.【分析】根据题意,求出长半轴和短半轴的长度,利用长轴长是短轴长的两倍,解方程求出m的值.【解答】解:椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,∴,故选A.【点评】本题考查椭圆的简单性质,用待定系数法求参数m的值.2.函数f(x)=x﹣sinx的大致图象可能是()A. B. C. D.参考答案:A【考点】6D:利用导数研究函数的极值;3O:函数的图象.【分析】利用函数的奇偶性排除选项,利用导函数求解极值判断即可.【解答】解:函数f(x)=x﹣sinx是奇函数,排除选项C.f′(x)=﹣cosx,x∈(0,),f′(x)<0函数是减函数,排除B,D.故选:A.【点评】本题考查函数的单调性与函数的极值的关系,函数的图象的判断,考查计算能力.3.已知等比数列的各项均为正数,公比,设,,则与的大小关系是

(A)

(B)

(C)

(D)无法确定参考答案:A略4.设命题p:?n∈N,n2>2n,则“非p”为()A.?n∈N,n2>2n B.?n∈N,n2≤2nC.?n∈N,n2≤2n D.?n∈N,n2=2n参考答案:C5.已知向量,,则(

)A.(-6,-4) B.(-5,-6) C.(-8,-5) D.(-7,-6)参考答案:C【分析】由已知向量的坐标运算直接求得的坐标.【详解】∵向量(-2,﹣1),(3,2),∴.故选C.【点睛】本题考查了向量坐标的运算及数乘运算,属于基础题.6.函数的最小正周期为,则该函数的图象(

)A.关于直线对称 B.关于直线对称C.关于点对称 D.关于点对称参考答案:B【分析】求出函数的解析式,然后判断对称中心或对称轴即可.【详解】函数f(x)=2sin(ωx)(ω>0)的最小正周期为,可得ω=4,函数f(x)=2sin(4x).由4xkπ+,可得x,k∈Z.当k=0时,函数的对称轴为:x.故选:B.【点睛】本题考查三角函数的性质的应用,周期的求法,考查计算能力,是基础题7.动点P到点M(1,0)与点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线参考答案:D【考点】轨迹方程.【分析】根据双曲线的定义:动点到两定点的距离的差的绝对值为小于两定点距离的常数时为双曲线;距离当等于两定点距离时为两条射线;距离当大于两定点的距离时无轨迹.【解答】解:|PM|﹣|PN|=2=|MN|,点P的轨迹为一条射线故选D.【点评】本题考查双曲线的定义中的条件:小于两定点间的距离时为双曲线.8.函数的零点所在的区间是A.(0,1) B.(1,10) C.(10,100) D.(100,+∞)参考答案:B∵,,∴,由零点的存在性定理知,方程的解一定位于区间,因此,函数的零点所处的区间是,故选B.9.“直线l与平面内无数条直线都垂直”是“直线l与平面垂直”的(

)条件.充要

充分非必要

必要非充分

既非充分又非必要参考答案:C略10.已知,是两条不同直线,,是两个不同平面,给出四个命题:

①若,,,则;②若,,则;③若,,,则;④若,,,则.其中正确的命题是.①② .②③

.①④

.②④参考答案:.由线面垂直、面面垂直和线面平行、面面平行的判定与性质知,①、④错;故选.二、填空题:本大题共7小题,每小题4分,共28分11.参考答案:12.若正三棱柱的棱长均相等,则与侧面所成角的正切值为___.参考答案:13.展开式中的一次项系数为

▲.参考答案:55

14.已知i是虚数单位,则=

.参考答案:【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解答】解:∵,∴=.故答案为:.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.15.在平面直角坐标系中,已知顶点、,直线PA与直线PB的斜率之积为﹣2,则动点P的轨迹方程为()A.=1 B.=1(x≠0)C.=1 D.=1(y≠0)参考答案:B【考点】轨迹方程.【分析】设动点P的坐标为(x,y),可表示出直线PA,PB的斜率,根据题意直线PA与直线PB的斜率之积为﹣2,建立等式求得x和y的关系式,得到点P的轨迹方程.【解答】解:设动点P的坐标为(x,y),则由条件得=﹣2.即=1(x≠0).所以动点P的轨迹C的方程为=1(x≠0).故选B.16.函数的导数

.参考答案:17.已知函数,函数有四个零点,则实数k的取值范围是______.参考答案:【分析】将问题转化为与有四个不同的交点的问题;画出图象后可知,当与在和上分别相切时,两切线斜率之间的范围即为所求的范围,利用导数几何意义和二次函数的知识分别求解出两条切线斜率,从而得到所求范围.【详解】有四个零点等价于与有四个不同的交点当时,,当时,;当时,即在上单调递减,在上单调递增

当时,,此时由此可得图象如下图所示:恒过,由图象可知,直线位于图中阴影部分时,有四个不同交点即临界状态为与两段图象分别相切当与相切时,可得:当与相切时设切点坐标为,则又恒过,则即,解得:

由图象可知:【点睛】本题考查利用函数零点个数求解参数范围的问题,其中还涉及到导数几何意义的应用、二次函数的相关知识.解决零点问题的常用方法为数形结合的方法,将问题转化为曲线与直线的交点问题后,通过函数图象寻找临界状态,从而使问题得以求解.

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)如图,已知在侧棱垂直于底面三棱柱中,,点是的中点。(1)求证:(2)求证:

(3)求三棱锥的体积.参考答案:略19.(14分)已知函数,.(Ⅰ)当时,求函数的最小值;(Ⅱ)当时,求证:无论取何值,直线均不可能与函数相切;(Ⅲ)是否存在实数,对任意的,且,有恒成立,若存在求出的取值范围,若不存在,说明理由。参考答案:(Ⅰ)显然函数的定义域为,

....................1分当.

...............2分∴当,.∴在时取得最小值,其最小值为.

............4分(Ⅱ)∵,....................................5分假设直线与相切,设切点为,则

所以所以无论取何值,直线均不可能与函数相切。....................8分(Ⅲ)假设存在实数使得对任意的,且,有,恒成立,不妨设,只要,即:令,只要在为增函数又函数.考查函数..................12分要使,故存在实数恒成立..................................................14分20.本小题满分12分)

如图,△ABC中,AC=BC=AB,ABED是正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;

(2)求证:AC⊥平面EBC;参考答案:略21.数列{bn}中,b1=a,b2=a2,其中a>0,对于函数f(x)=(bn+1-bn)x3-(bn-bn-1)x(n≥2)有.

(1)求数列{bn}的通项公式bn;

(2)若Sn=c1+c2+…+cn,①求证:;

②求证:Sn<.参考答案:解析:(1)

(2)①

;

②由①可得……

.

即证.

22.(2010辽宁理数)(本小题满分14分)已知函数(I)讨论函数的单调性;(II)设.若对任意,,求的取值范围。参考答案:(Ⅰ)的定义域为(0,+∞)..当时,>0,故在(0,+∞)单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论