matlab主成分分析案例_第1页
matlab主成分分析案例_第2页
matlab主成分分析案例_第3页
matlab主成分分析案例_第4页
matlab主成分分析案例_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.设随机向量X=(X1,X2,X3)T的协方差与有关系数矩阵分别为,分别从,出发,求的各主成分以及各主成分的奉献率并比较差异况。解答:>>S=[14;425];>>[PC,vary,explained]=pcacov(S);总体主成分分析:>>[PC,vary,explained]=pcacov(S)主成分互换矩阵:PC=-0.1602-0.9871-0.98710.1602主成分方差向量:vary=25.64910.3509各主成分奉献率向量explained=98.65041.3496则由程序输出成果得出,X的主成分为:Y1=-0.1602X1-0.9871X2Y2=-0.9871X1+0.1602X2两个主成分的奉献率分别为:98.6504%,1.3496%;则若用第一种主成分替代本来的变量,信息损失率仅为1.3496,是很小的。2.根据安徽省各地市经济指标数据,见表5.2,求解:(1)运用主成分分析对17个地市的经济发展进行分析,给出排名;(2)此时能否只用第一主成分进行排名?为何?地区工业总产值资产合计工业增长值实收资本长期负债业务收入业务成本利润合肥491.70380.31158.39121.5422.74439.65344.4417.43淮北21.1230.556.4012.403.3121.1717.712.03亳州1.712.350.570.680.131.481.36-0.03宿州9.839.053.133.430.648.767.810.54蚌埠64.0677.8620.6330.375.9663.5752.154.71阜阳30.3846.909.199.8317.8728.2421.903.80淮南31.2070.078.9318.8833.0531.1726.502.84滁州79.1862.0920.7824.473.5171.2959.076.78六安47.8140.1417.509.524.1445.7034.734.47马鞍山104.6978.9529.6125.965.3998.0884.813.81巢湖21.0717.836.216.221.9020.2416.461.09芜湖214.19146.7865.1641.624.39194.98171.9811.05宣城31.1627.568.809.441.4728.8325.221.05铜陵12.7914.163.664.071.5711.9510.240.73池州6.455.372.392.200.405.974.790.52安庆39.4344.6015.1715.723.2736.0327.873.48黄山5.023.621.631.420.534.454.040.02解答:(1)>>clear>>A=[491.70,380.31,158.39,121.54,22.74,439.65,344.44,17.43;21.12,30.55,6.40,12.40,3.31,21.17,17.71,2.03;1.71,2.35,0.57,0.68,0.13,1.48,1.36,-0.03;9.83,9.05,3.13,3.43,0.64,8.76,7.81,0.54;64.06,77.86,20.63,30.37,5.96,63.57,52.15,4.71;30.38,46.90,9.19,9.83,17.87,28.24,21.90,3.80;31.20,70.07,8.93,18.88,33.05,31.17,26.50,2.84;79.18,62.09,20.78,24.47,3.51,71.29,59.07,6.78;47.81,40.14,17.50,9.52,4.14,45.70,34.73,4.47;104.69,78.95,29.61,25.96,5.39,98.08,84.81,3.81;21.07,17.83,6.21,6.22,1.90,20.24,16.46,1.09;214.19,146.78,65.16,41.62,4.39,194.98,171.98,11.05;31.16,27.56,8.80,9.44,1.47,28.83,25.22,1.05;12.76,14.16,3.66,4.07,1.57,11.95,10.24,0.73;6.45,5.37,2.39,2.20,0.40,5.97,4.79,0.52;39.43,44.60,15.17,15.72,3.27,36.03,27.87,3.48;5.02,3.62,1.63,1.42,0.53,4.45,4.04,0.02];得到的有关系数矩阵为:>>R=corrcoef(A)R=1.00000.98770.99880.98200.42810.99990.99800.95100.98771.00000.98840.99470.54380.98850.98350.94850.99880.98841.00000.98240.42940.99840.99480.94620.98200.99470.98241.00000.50510.98290.97630.93910.42810.54380.42940.50511.00000.43110.42040.45570.99990.98850.99840.98290.43111.00000.99860.95300.99800.98350.99480.97630.42040.99861.00000.95690.95100.94850.94620.93910.45570.95300.95691.0000计算特性值与特性向量:>>[v,d]=eig(corrcoef(A))v=-0.37230.11790.1411-0.2543-0.04590.5917-0.56410.3041-0.3741-0.03430.16060.2247-0.1514-0.6284-0.15350.5841-0.37190.11520.1957-0.1954-0.6909-0.13510.0383-0.5244-0.37130.00960.23680.78750.21680.23850.0303-0.2845-0.1949-0.9689-0.0004-0.12420.01190.06280.0151-0.0593-0.37250.11430.1222-0.23020.09240.22590.79460.2988-0.37160.12720.0353-0.38000.6591-0.3521-0.1557-0.3428-0.36130.0596-0.91850.1165-0.08720.03020.0022-0.0096d=7.1135000000000.7770000000000.0810000000000.0237000000000.0041000000000.0006000000000.0000000000000.0001各主成分奉献率:>>w=sum(d)/sum(sum(d))w=0.88920.09710.01010.00300.00050.00010.00000.0000计算各个主成分得分:>>F=[A-ones(17,1)*mean(A)]*v(:,8)F=224.3503-24.0409-40.0941-35.90754.7573-12.6102-2.85731.8038-13.901213.4541-29.384762.3383-23.3175-32.4285-38.1309-14.8637-39.1675>>[F1,I1]=sort(F,'descend')F1按从大到小的次序给个主成分得分排名:F1=224.350362.338313.45414.75731.8038-2.8573-12.6102-13.9012-14.8637-23.3175-24.0409-29.3847-32.4285-35.9075-38.1309-39.1675-40.0941I1给出各个名次的序号:I1=1121058769161321114415173>>[F2,I2]=sort(I1)F2=123

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论