版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省中学山市黄圃镇马新初级中学八年级数学第一学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.等腰三角形的一个角是80°,则它的顶角的度数是()A.80° B.80°或20° C.80°或50° D.20°2.下列命题是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角3.下列算式中,结果与相等的是()A. B. C. D.4.下列调查适合抽样调查的是()A.审核书稿中的错别字 B.企业招聘,对应聘人员进行面试C.了解八名同学的视力情况 D.调查某批次汽车的抗撞击能力5.在中,,则的长为()A.2 B. C.4 D.4或6.等腰三角形的底角等于,则该等腰三角形的顶角度数为()A. B. C.或 D.或7.如图,在数轴上表示实数的点可能是().A.点 B.点 C.点 D.点8.计算结果正确的是()A. B. C. D.9.等腰三角形一个角的度数为50°,则顶角的度数为()A.50° B.80° C.65° D.50°或80°10.若a-2b=1,则代数式a2-2ab-2b的值为()A.-1 B.0 C.1 D.2二、填空题(每小题3分,共24分)11.已知:,,则__________.12.在平面直角坐标系中,若点到原点的距离是,则的值是________.13.比较大小:__________1.(填>或<)14.若二次根式有意义,则x的取值范围是___.15.如图,长方形台球桌面上有两个球、.,球连续撞击台球桌边,反射后,撞到球.已知点、是球在,边的撞击点,,,且点到边的距离为3,则的长为__________,四边形的周长为________16.我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若,则该等腰三角形的顶角为______________度.17.诺如病毒的直径大约0.0000005米,将0.0000005用科学记数法可表示为________18.如图,,要使,则的度数是_____.三、解答题(共66分)19.(10分)已知:直线,点,分别是直线,上任意两点,在直线上取一点,使,连接,在直线上任取一点,作,交直线于点.(1)如图1,若点是线段上任意一点,交于,求证:;(2)如图2,点在线段的延长线上时,与互为补角,若,请判断线段与的数量关系,并说明理由.20.(6分)求证:等腰三角形两腰上的中线相等.(1)请用尺规作出△ABC两腰上的中线BD、CE(保留痕迹,不写作法);(2)结合图形,写出已知、求证和证明过程.21.(6分)甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城在整个行驶过程中,甲、乙两车离开A城的距离千米与甲车行驶的时间小时之间的函数关系如图所示.,B两城相距______千米,乙车比甲车早到______小时;甲车出发多长时间与乙车相遇?若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?22.(8分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(1)若∠BAC=90°,求证:BF1+CD1=FD1.23.(8分)如图1,两个不全等的等腰直角三角形和叠放在一起,并且有公共的直角顶点.(1)在图1中,你发现线段的数量关系是______.直线相交成_____度角.(2)将图1中绕点顺时针旋转90°,连接得到图2,这时(1)中的两个结论是否成立?请作出判断说明理由.24.(8分)如图与x轴相交于点A,与y轴交于点B,求A、B两点的坐标;点为x轴上一个动点,过点C作x轴的垂线,交直线于点D,若线段,求a的值.25.(10分)先化简,再求值:,并从,,,这四个数中取一个合适的数作为的值代入求值.26.(10分)如图,中,,点D为边AC上一点,于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若,求的大小;
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:分80°角是顶角与底角两种情况讨论求解.①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.考点:等腰三角形的性质.2、D【解题分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可.【题目详解】解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、个三角形中至少有两个锐角,原命题是真命题;故选:D.【题目点拨】考核知识点:不等式的性质、对顶角的性质、三角形和补角的性质.3、C【分析】已知,然后对A、B、C、D四个选项进行运算,A根据合并同类项的法则进行计算即可;B根据同底数幂的乘法法则进行计算即可;C根据幂的乘方法则进行计算即可;D根据同底数幂除法法则进行计算即可.【题目详解】∵A.,不符合题意B.,不符合题意C.,符合题意D.,不符合题意故C正确故选:C【题目点拨】本题考查了合并同类项的法则、同底数幂的乘法法则、幂的乘方法则、同底数幂除法法则.4、D【分析】根据“抽样调查”和“全面调查”各自的特点结合各选项中的实际问题分析解答即可.【题目详解】A选项中,“审核书稿中的错别字”适合使用“全面调查”;B选项中,“企业招聘,对应聘人员进行面试”适合使用“全面调查”;C选项中,“了解八名同学的视力情况”适合使用“全面调查”;D选项中,“调查某批次汽车的抗撞击能力”适合使用“抽样调查”.故选D.【题目点拨】熟知“抽样调查和全面调查各自的特点和适用范围”是解答本题的关键.5、D【分析】分b是斜边、b是直角边两种情况,根据勾股定理计算即可.【题目详解】解:当b是斜边时,c=,当b是直角边时,c=,则c=4或,故选:D.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.6、B【分析】根据等腰三角形的性质及三角形的内角和直接求出顶角即可.【题目详解】解:∵三角形为等腰三角形,且底角为50°,∴顶角=180°﹣50°×2=80°.故选:B.【题目点拨】本题考查等腰三角形的性质,三角形内角和定理,题目比较简单,理解等腰三角形两个底角相等是解题关键.7、B【分析】先确定
是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【题目详解】解:∵∴∴表示实数的点可能是E,故选:B.【题目点拨】本题考查实数与数轴上的点的对应关系,正确判断无理数在哪两个相邻的整数之间是解题的关键.8、B【分析】根据同底数幂的乘法法则计算即可.【题目详解】故选:B.【题目点拨】本题考查了同底数幂的乘法,熟记运算法则是解题关键.9、D【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以分两种情况,①50°为顶角;②50°为底角来讨论.【题目详解】(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°-2×50°=80°,所以D选项是正确的,故本题选D.【题目点拨】本题考查了等腰三角形的性质及三角形内角和定理,若没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是解答问题的关键.10、C【分析】已知a−2b的值,将原式变形后代入计算即可求出值.【题目详解】解:∵a−2b=1,∴2b=a-1,∴a2-2ab-2b=a2-a(a-1)-(a-1)=a2-a2+a-a+1)=1,故选:C.【题目点拨】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共24分)11、【分析】将转化为,再把转化为,则问题可解【题目详解】解:∵【题目点拨】本题考查了同底数幂的除法和幂的乘方的逆运算,解答关键是将不同底数的幂运算转化成同底数幂进行计算.12、3或-3【分析】根据点到原点的距离是,可列出方程,从而可以求得x的值.【题目详解】解:∵点到原点的距离是,∴,解得:x=3或-3,故答案为:3或-3.【题目点拨】本题考查了坐标系中两点之间的距离,解题的关键是利用勾股定理列出方程求解.13、>【分析】先确定的取值范围是,即可解答本题.【题目详解】解:,;故答案为:>.【题目点拨】本题考查的是实数的大小比较,确定无理数的取值范围是解决此题的关键.14、【题目详解】试题分析:根据题意,使二次根式有意义,即x﹣1≥0,解得x≥1.故答案是x≥1.【题目点拨】考点:二次根式有意义的条件.15、61【分析】作PE⊥AB于E,则PE=3,延长PQ、MN交于点Q,证出Q与Q'关于BC对称,MP=2PE=6,由轴对称的性质得出NQ'=NQ,证出∠Q'=30°=∠MPQ,得出MQ'=MP=6,即可得出答案.【题目详解】解:作PE⊥AB于E,则PE=3,延长PQ、MN交于点Q,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AB⊥BC,∵PQ//AB,∴PQ⊥BC,∠EMP=∠MPQ=30°,∠Q'=∠BMN,∴Q与Q'关于BC对称,MP=2PE=6,∴NQ'=NQ,由题意得:∠BMN=∠EMP=30°,∴∠Q'=30°=∠MPQ,∴MQ'=MP=6,∴四边形PMNQ的周长=MP+PQ+NQ+MN=MP+PQ+NQ'+MN=MP+PQ+MQ'=6+4+6=1;故答案为:6,1.【题目点拨】本题考查了矩形的性质、轴对称的性质、平行线的性质、等腰三角形的判定等知识;熟练掌握矩形的性质和轴对称的性质是解题的关键.16、【分析】根据等腰三角形的性质得出∠B=∠C,根据“特征值”的定义得到∠A=2∠B,根据三角形内角和定理和已知得出4∠B=180°,求解即可得出结论.【题目详解】∵△ABC中,AB=AC,∴∠B=∠C.∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=2,∴∠A:∠B=2,即∠A=2∠B.∵∠A+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∴∠A=2∠B=1°.故答案为1.【题目点拨】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出4∠B=180°是解答此题的关键.17、5×10-7【解题分析】试题解析:0.0000005=5×10-718、115°【分析】延长AE交直线b于B,依据∠2=∠3,可得AE∥CD,当a∥b时,可得∠1=∠5=65°,依据平行线的性质,即可得到∠4的度数.【题目详解】解:如图,延长AE交直线b于B,
∵∠2=∠3,
∴AE∥CD,
当a∥b时,∠1=∠5=65°,
∴∠4=180°-∠5=180°-65°=115°,
故答案为:115°.【题目点拨】本题主要考查了平行线的性质与判定,解题时注意:应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.三、解答题(共66分)19、(1)见解析;(2),见解析【分析】(1)以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,证明△AEB≌△MEF,根据全等三角形的性质证明;
(2)在直线m上截取AN=AB,连接NE,证明△NAE≌△ABE,根据全等三角形的性质得到EN=EB,∠ANE=∠ABE,证明EN=EF,等量代换即可.【题目详解】(1)如图1,以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,∴,∵,∴,∵,∴,,∴,∴,∵,∴,∵,∴,∴,∴;(2).理由如下:如图2,在直线上截取,连接,∵,AB=BC,∴,∵,∴,,∵,∴,∴,,∵,,∴,∴,∴.【题目点拨】本题考查的是全等三角形的判定和性质、等腰三角形的判定和性质、平行线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.20、(1)作图见解析;(2)见解析.【分析】(1)分别作AB、AC的垂直平分线得到AB、AC的中点E、D,从而得到AB、AC边上的中线CE、BD;(2)结合图形写出已知,求证,然后再根据已知和图形进行证明.可根据等腰三角形的性质得出相关的等角或相等的线段:DC=BE,∠DCB=∠EBC,BC=CB,可证明△BDC≌△CEB,所以BD=CE,即等腰三角形的两腰上的中线相等.【题目详解】(1)如图,CE、BD分别为AB、AC边上的中线;(2)已知:△ABC中,AB=AC,AD=DC,AE=EB,
求证:BD=CE.证明:∵AB=AC,AD=DC,AE=EB,
∴AD=AE,
在△ABD与△ACE中,
∴△ABD△ACE(SAS).
∴BD=CE.
即等腰三角形的两腰上的中线相等.【题目点拨】本题主要考查了等腰三角形的性质和文字证明题的相关步骤以及作图-基本作图.要注意文字证明题的一般步骤是:①根据题意作图,②根据图形写出已知、求证,③证明.21、(1)300千米,1小时(2)2.5小时(3)1小时【解题分析】(1)根据函数图象可以直接得到A,B两城的距离,乙车将比甲车早到几小时;(2)由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,求得两函数图象的交点即可(3)再令两函数解析式的差小于或等于20,可求得t可得出答案.【题目详解】(1)由图象可知A、B两城市之间的距离为300km,甲比乙早到1小时,(2)设甲车离开A城的距离y与t的关系式为y甲=kt,
把(5,300)代入可求得k=60,
∴y甲=60t,
设乙车离开A城的距离y与t的关系式为y乙=mt+n,
把(1,0)和(4,300)代入可得,
解得:,
∴y乙=100t-100,
令y甲=y乙,可得:60t=100t-100,
解得:t=2.5,
即甲、乙两直线的交点横坐标为t=2.5,
∴甲车出发2.5小时与乙车相遇(3)当y甲-y乙=20时60t-100t+100=20,t=2当y乙-y甲=20时100t-100-60t=20,t=3∴3-2=1(小时)∴两车都在行驶过程中可以通过无线电通话的时间有1小时【题目点拨】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,特别注意t是甲车所用的时间.22、(1)CD=BE,理由见解析;(1)证明见解析.【分析】(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.【题目详解】解:(1)CD=BE,理由如下:∵△ABC和△ADE为等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB与△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【题目点拨】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.23、(1)AC=BD,直线相交成90°;(2)结论成立,详见解析.【分析】(1)由图可知线段AC,BD相等,且直线AC,BD相交成90°角.(2)以上关系仍成立.延长CA交BD于点E,根据勾股定理可证得AC=BD,即可证明△AOC≌△BOD,根据两全等三角形对应角的关系,即可证明CE⊥BD.【题目详解】(1)因为∆和△是等腰直角三角形,所以OC=OD,OA=OB,∠O=90°所以OC-OA=OD-OB,所以AC=BD,直线相交成90°;
(2)(1)中的两个结论仍然成立,理由如下:
∵∆和∆OCD都是等腰直角三角形
∴OA=OB,OC=OD,∠COD=∠AOB=90°∴△AOC≌△BOD
∴AC=BD,∠ACO=∠BDO
延长CA交BD于点E.
∵∠DBO+∠BDO=90°∴∠DBO+∠ACO=90°
∴∠CEB=90°即:直线AC,BD相交成90度角.【题目点拨】本题主要考查了全等三角形的判定和性质,涉及到等腰直角三角形的性质、旋转的相关知识点,熟练掌握全等三角形的判定方法是解题的关键.24、(1)A,B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026春招:学习成长企划顾问题目及答案
- 2026年桥梁设计中的地震动参数研究
- 2026年桥梁设计中的非线性分析与优化
- 2026年未来电气传动控制的研究方向
- 2026春招:维修技术员笔试题及答案
- 贩毒与吸毒的法律问题
- 住院部病患护理质量评估
- 2026年邯郸科技职业学院单招综合素质考试备考试题带答案解析
- 2026年黑龙江旅游职业技术学院单招职业技能考试参考题库带答案解析
- 生物仿制药的研发与产业化
- 2025年青岛卫生局事业单位考试及答案
- 纪委档案规范制度
- 杭州钱塘新区建设投资集团有限公司2025年度第三次公开招聘工作人员备考题库及完整答案详解
- 眼科质控课件
- 安徽信息会考题库及答案
- 2025年中级消防监控题库及答案
- 隧道施工废水处理人员培训方案
- 2025年射频识别技术面试题库及答案
- 拣货主管年终总结
- 糖尿病重症患者肠内营养血糖调控方案
- CSR社会责任管理手册
评论
0/150
提交评论