版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市台儿庄区2024届八年级数学第一学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.方程组的解中x与y的值相等,则k等于()A.-1 B.-2 C.-3 D.-42.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的内角和是()A.360° B.540° C.720° D.900°3.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.44.一次函数的图象大致是()A. B. C. D.5.等式(x+4)0=1成立的条件是()A.x为有理数 B.x≠0 C.x≠4 D.x≠-46.已知△ABC的一个外角为70°,则△ABC一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.锐角三角形或钝角三角形7.下列各式运算正确的是()A. B. C. D.8.如果把分式中的x,y同时扩大为原来的3倍,那么该分式的值()A.不变 B.扩大为原来的3倍C.缩小为原来的 D.缩小为原来的9.有下列实数:,﹣0.101001,,π,其中无理数有()A.1个 B.2个 C.3个 D.4个10.关于x的方程解为正数,则m的范围为()A. B. C. D.11.下列各数:3.141,−227,8,π,4.21·7A.1个 B.2 C.3个 D.4个12.如图,数轴上的点分别表示数-1,1,2,3,则表示的点应在()A.线段上 B.线段上 C.线段上 D.线段上二、填空题(每题4分,共24分)13.如图,在中,,点在边上,连接,过点作于点,连接,若,则的面积为________.14.化简:=__________.15.若直角三角形斜边上的高和中线长分别是5cm,8cm,则它的面积是_____cm1.16.某学校八年级班学生准备在植树节义务植树棵,原计划每小时植树棵,实际每小时植树的棵数是原计划的倍,那么实际比原计划提前了__________小时完成任务.(用含的代数式表示).17.在实数范围内分解因式:_______________________.18.直角坐标平面上有一点P(﹣2,3),它关于y轴的对称点P′的坐标是_____.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.20.(8分)如图,在中,,点,,分别在边,,上,且,,连结,,,(1)求证:.(2)判断的形状,并说明理由.(3)若,当_______时,.请说明理由.21.(8分)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.22.(10分)如图,AD是△ABC的外角平分线,∠B=35°,∠DAE=60°,求∠C的度数.23.(10分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)24.(10分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.25.(12分)如图,已知经过点M(1,4)的直线y=kx+b(k≠0)与直线y=2x-3平行.(1)求k,b的值;(2)若直线y=2x-3与x轴交于点A,直线y=kx+b交x轴于点B,交y轴于点C,求△MAC的面积.26.先化简,再求值:,在a=±2,±1中,选择一个恰当的数,求原式的值.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】分析:首先根据方程组的解法求出x和y的值,然后根据x=y得出k的值.详解:解方程组可得:,∵x与y的值相等,∴,解得:k=-2,故选B.点睛:本题主要考查的就是二元一次方程组的解法,属于基础题型.解二元一次方程组就是利用消元的思想来进行,可以加减消元,也可以代入消元.本题中在解方程组的时候一定要讲k看作是已知数,然后进行求解得出答案.2、B【分析】根据从多边形的一个顶点可以作对角线的条数公式求出边数,然后根据多边形的内角和公式列式进行计算即可得解.【题目详解】∵多边形从一个顶点出发可引出2条对角线,∴,解得:,∴内角和.故选:B.【题目点拨】本题考查了多边形的内角和公式,多边形的对角线的公式,求出多边形的边数是解题的关键.3、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【题目详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【题目点拨】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.4、D【分析】根据一次函数的图象与系数的关系选出正确选项.【题目详解】解:根据函数解析式,∵,∴直线斜向下,∵,∴直线经过y轴负半轴,图象经过二、三、四象限.故选:D.【题目点拨】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状.5、D【解题分析】试题分析:0指数次幂的性质:.由题意得,x≠-4,故选D.考点:0指数次幂的性质点评:本题属于基础应用题,只需学生熟练掌握0指数次幂的性质,即可完成.6、C【分析】利用三角形外角与内角的关系计算即可.【题目详解】∵△ABC的一个外角为70°,∴与它相邻的内角的度数为110°,∴该三角形一定是钝角三角形,故选:C.【题目点拨】本题考查三角形内角、外角的关系及三角形的分类,熟练掌握分类标准是解题的关键.7、D【分析】计算出各个选项中式子的正确结果,然后对照即可得到哪个选项是正确的.【题目详解】解:∵,故选项A错误;∵,故选项B错误;∵,故选项C错误;∵,故选项D正确;故选D.【题目点拨】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.8、C【分析】根据题意和分式的基本性质即可得出结论.【题目详解】解:即该分式的值缩小为原来的故选C.【题目点拨】此题考查的是分式法基本性质的应用,掌握分式的基本性质是解决此题的关键.9、A【解题分析】根据无理数、有理数的定义,即可得到答案.【题目详解】=2是整数,属于有理数,﹣0.101001是有限小数,属于有理数,是分数,属于有理数,π是无理数,故选:A.【题目点拨】本题主要考查无理数、有理数的定义,掌握它们的定义是解题的关键.10、B【分析】首先解分式方程,然后令其大于0即可,注意还有.【题目详解】方程两边同乘以,得∴解得且故选:B.【题目点拨】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.11、C【解题分析】无理数就是无限不循环小数,依据定义即可判断.【题目详解】8=22,根据无理数的定义可知无理数有:8,π,0.1010010001……,故答案为【题目点拨】本题考查无理数的定义,解题的关键是掌握无理数的定义.12、D【分析】根据5在平方数4与9之间,可得的取值范围,再根据不等式的性质估算出的值的取值范围即可确定P点的位置.【题目详解】∵∴,即∴点P在线段AO上故选:D【题目点拨】此题主要考查了无理数的估算,解题关键是正确估算的值的取值范围.二、填空题(每题4分,共24分)13、1【分析】如图,作CH⊥AD交AD的延长线于H.只要证明△ABD≌△CAH(AAS),推出AD=CH=4,即可解决问题.【题目详解】如图,作CH⊥AD交AD的延长线于H.∵AD⊥BE,CH⊥AH,∴∠ADB=∠H=∠ABC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAH=90°,∴∠CAH=∠ABD,∵AB=AC,∴△ABD≌△CAH(AAS),∴AD=CH=4,∴S△ADC=×4×4=1.故答案为1.【题目点拨】本题考查全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.14、【分析】先计算括号内的加法,除法转化成乘法,约分后可得结果.【题目详解】.故答案为:.【题目点拨】本题考查了分式的化简,掌握分式的混合运算的顺序与方法是解题的关键.15、40【分析】三角形面积=斜边.【题目详解】直角三角形斜边上的中线等于斜边的一半,三角形面积=斜边=5=40.【题目点拨】掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.16、【分析】等量关系为:原计划时间-实际用时=提前的时间,根据等量关系列式.【题目详解】由题意知,原计划需要小时,实际需要小时,
故提前的时间为,
则实际比原计划提前了小时完成任务.故答案为:.【题目点拨】本题考查了列分式,找到等量关系是解决问题的关键,本题还考查了工作时间=工作总量÷工效这个等量关系.17、【分析】先解方程0,然后把已知的多项式写成的形式即可.【题目详解】解:解方程0,得,∴.故答案为:.【题目点拨】本题考查了利用解一元二次方程分解因式,掌握解答的方法是解题的关键.18、(2,3)【分析】关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.根据关于y轴对称的点的特点解答即可.【题目详解】解:点P(﹣2,3)关于y轴的对称点P'的坐标是(2,3),故答案为:(2,3).【题目点拨】本题考查了平面直角坐标系内,点关于y轴对称的点的坐标的特征,掌握关于y轴对称的点的特征是解题的关键.三、解答题(共78分)19、(1)y=x+6;(2)D(﹣,3),S△BCD=4;(3)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0)【分析】(1)根据待定系数法可得直线l1的解析式;(2)如图1,过C作CH⊥x轴于H,求点E的坐标,利用C和E两点的坐标求直线l2的解析式,与直线l1列方程组可得点D的坐标,利用面积和可得△BCD的面积;(3)分四种情况:在x轴和y轴上,证明△DMQ≌△QNC(AAS),得DM=QN,QM=CN,设D(m,m+6)(m<0),表示点Q的坐标,根据OQ的长列方程可得m的值,从而得到结论.【题目详解】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(xC﹣xD)=;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6-=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).【题目点拨】本题是综合了一次函数的图象与性质,全等三角形的性质与判定,直角三角形与等腰直角三角形的性质等知识的分情况讨论动点动图问题,在熟练掌握知识的基础上,需要根据情况作出辅助线,或者作出符合题意的图象后分情况讨论.20、(1)见解析;(2)△ABC是等边三角形,理由见解析;(3),理由见解析【分析】(1)根据等边对等角可证∠B=∠C,然后利用SAS即可证出结论;(2)根据全等三角形的性质可得∠BFD=∠CDE,从而得出∠B=∠1=60°,然后根据等边三角形的判定定理即可得出结论;(3)作FM⊥BC于M,利用30°所对的直角边是斜边的一半即可求出BM,从而求出BD.【题目详解】(1)证明:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CED(SAS);(2)解:△ABC是等边三角形,理由如下:由(1)得:△BDF≌△CED,∴∠BFD=∠CDE,∵∠CDF=∠B+∠BFD=∠1+∠CDE,∴∠B=∠1=60°,∵AB=AC,∴△ABC是等边三角形(3)解:当时,DF⊥BC,理由如下:作FM⊥BC于M,如图所示:由(2)得:△ABC是等边三角形,∴∠B=∠C=60°,∵FM⊥BC,∴∠BFM=30°,∴,∴,∵∴M与D重合,∴时,DF⊥BC故答案为:.【题目点拨】此题考查的是全等三角形的判定及性质、等边三角形的判定和直角三角形的性质,掌握全等三角形的判定及性质、等边三角形的判定和30°所对的直角边是斜边的一半是解决此题的关键.21、(1)不成立.结论是∠BPD=∠B+∠D,证明见解析;(2);(3)360°.【分析】(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据四边形的内角和以及(2)的结论求解即可.【题目详解】解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.作射线QP,∵∠BPE是△BPQ的外角,∠DPE是△PDQ的外角,∴∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP,即∠BPD=∠BQD+∠B+∠D;(3)在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,又∵∠AGB=∠CGF,∴∠AGB+∠C+∠D+∠F=360°,由(2)知,∠AGB=∠B+∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【题目点拨】本题考查的是平行线的性质,三角形的内角,三角形外角的性质,以及多边形的内角和,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.22、85°【解题分析】试题分析:先根据AD是△ABC的外角∠CAE的角平分线,∠DAE=60°求出∠CAE的度数,再根据三角形外角的性质即可得出结论.试题解析:∵AD平分∠CAE,∴∠DAE=∠CDA=60°∴∠CAE=120°∵∠CAE=∠B+∠C∴∠C=∠CAE-∠B=120°-35°=85°.23、a.240,b.乙;理由见解析.【解题分析】试题分析:(1)由表可知乙部门样本的优秀率为:,则整个乙部门的优秀率也是,因此即可求解;(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:成绩人数部门甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400×=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.24、(1)详见解析;(2)65°.【分析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年重庆建筑工程职业学院单招(计算机)考试备考题库附答案
- 2026年苏州托普信息职业技术学院单招综合素质考试题库附答案
- 2026年湖南财经工业职业技术学院单招(计算机)考试备考题库及答案1套
- 2026年山东文化产业职业学院单招职业技能测试题库附答案
- 2026年三亚航空旅游职业学院单招职业技能测试模拟测试卷附答案
- 2026年惠州工程职业学院单招综合素质考试模拟测试卷附答案
- 2025年全国大学生百科知识竞赛题库及答案(230题)
- 2026年潍坊环境工程职业学院单招职业倾向性测试题库附答案
- 2026年常德科技职业技术学院单招职业适应性测试模拟测试卷附答案
- 2026年江西理工大学辅导员招聘备考题库附答案
- 冀教版五年级英语上册第三单元测试题
- 活动房屋建设设工程施工组织设计方案
- 佛堂水厂2xnt-l竣工文件合格证
- GB/T 26811-2011离子选择电极
- GB/T 20721-2006自动导引车通用技术条件
- OM管理流程培训课件
- 晟大石方静力爆破施工方案
- 食品辐照加工技术简介课件
- 人才强国战略课件
- AUX空气源热泵热水机组说明书
- DB32T 4073-2021 建筑施工承插型盘扣式钢管支架安全技术规程
评论
0/150
提交评论