江苏省句容市华阳片2024届八年级数学第一学期期末综合测试模拟试题含解析_第1页
江苏省句容市华阳片2024届八年级数学第一学期期末综合测试模拟试题含解析_第2页
江苏省句容市华阳片2024届八年级数学第一学期期末综合测试模拟试题含解析_第3页
江苏省句容市华阳片2024届八年级数学第一学期期末综合测试模拟试题含解析_第4页
江苏省句容市华阳片2024届八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省句容市华阳片2024届八年级数学第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则图中∠的度数是()A.75° B.65° C.55° D.45°2.如图,在中,点、、的坐标分别为、和,则当的周长最小时,的值为()A. B. C. D.3.如图,若,则下列结论错误的是()A. B. C. D.4.已知、均为正整数,且,则()A. B. C. D.5.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是(

)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m6.若等腰三角形的周长为,一边为,则腰长为()A. B. C.16或12 D.以上都不对7.在、、、中,最简二次根式的个数为()A.1个 B.2个 C.3个 D.4个8.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如表:选手甲乙丙丁平均数(环)9.09.09.09.0方差0.251.002.503.00则成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁9.入冬以来,我校得流行性感冒症状较重,据悉流感病毒的半径为0.000000126,请把0.000000126用科学记数法表示为()A. B. C. D.10.如图,在平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,连接.下列结论中:①;②是等边角形:③;④;⑤.其中正确的是()A.②③⑤ B.①④⑤ C.①②③ D.①②④二、填空题(每小题3分,共24分)11.若分式有意义,则的取值范围是_______________.12.(2016湖南省株洲市)已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1,直线CD的表达式为y2=k2x+b2,则k1k2=______.13.如图,由两个直角三角形和三个正方形组成的图形,已知,其中阴影部分面积是_____________平方单位.14.在实数-5,-,0,π,中,最大的数是________.15.已知,,则的值为____.16.比较大小:________.(填“>”或“<”).17.等腰三角形的两边长分别为2和4,则其周长为_____.18.等腰三角形一腰上的高与另一腰的夹角为20°,则该等腰三角形的底角的度为______.三、解答题(共66分)19.(10分)如图,在方格纸上有三点A、B、C,请你在格点上找一个点D,作出以A、B、C、D为顶点的四边形并满足下列条件.(1)使得图甲中的四边形是轴对称图形而不是中心对称图形.(2)使得图乙中的四边形不是轴对称图形而是中心对称图形.(3)使得图丙中的四边形既是轴对称图形又是中心对称图形.20.(6分)在实数的计算过程中去发现规律.(1)5>2,而<,规律:若a>b>0,那么与的大小关系是:.(2)对于很小的数0.1、0.001、0.00001,它们的倒数=;=;=.规律:当正实数x无限小(无限接近于0),那么它的倒数.(3)填空:若实数x的范围是0<x<2,写出的范围.21.(6分)已知:如图,在平面直角坐标系中,已知,,.(1)在下图中作出关于轴对称的,并写出三个顶点的坐标;(2)的面积为(直接写出答案);(3)在轴上作出点,使最小(不写作法,保留作图痕迹).22.(8分)如图,在平面直角坐标系中,直线y=x+与反比例函数y=(x<0)的图象交于A(-4,a)、B(-1,b)两点,AC⊥x轴于C,BD⊥y轴于D.(1)求a、b及k的值;(2)连接OA,OB,求△AOB的面积.23.(8分)计算题(1)(2)24.(8分)计算:(1);(2).25.(10分)计算:(1)(2)先化简,再求值:[(2m+n)(2m-n)+(m+n)2-2(2m2-mn)]÷(-4m),其中m=1,n=.26.(10分)已知关于x的一元二次方程x2﹣(k+3)x+3k=1.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据三角形的内角和定理、对顶角相等和三角形外角的性质即可得出结论.【题目详解】解:如下图所示∠1=180°-90°-45°=45°∴∠2=∠1=45°∴∠=∠2+30°=75°故选A.【题目点拨】此题考查的是三角形的内角和定理、三角形外角的性质和对顶角的性质,掌握三角形的内角和定理、三角形外角的性质和对顶角相等是解决此题的关键.2、B【分析】作点B关于x轴的对称点D,连接CD交x轴于点A,因为BC的长度不变,所以根据轴对称的性质可知此时的周长最小.【题目详解】作点B关于x轴的对称点D,连接CD交x轴于点A,此时的周长最小.作CE⊥y轴于点E.∵B(0,1),∴D(0,-1),∴OB=OD=1.∵C(3,2),∴OC=2,CE=3,∴DE=1+2=3,∴DE=CE,∴∠ADO=45°,OA=OD=1,∴m=1.故选B.【题目点拨】本题考查了等腰直角三角形的判定与性质,图形与坐标的性质,以及轴对称最短的性质,根据轴对称最短确定出点A的位置是解答本题的关键.3、D【分析】根据“全等三角形的对应角相等、对应边相等”的性质进行判断并作出正确的选择.【题目详解】解:A、∠1与∠2是全等三角形△ABC≌△CDA的对应角,则,故本选项不符合题意;

B、线段AC与CA是全等三角形△ABC≌△CDA的对应边,则,故本选项不符合题意;

C、∠B与∠D是全等三角形△ABC≌△CDA的对应角,则∠B=∠D,故本选项不符合题意;

D、线段BC与DC不是全等三角形△ABC≌△CDA的对应边,则BC≠DC,故本选项符合题意;

故选:D.【题目点拨】本题考查了全等三角形的性质.利用全等三角形的性质时,一定要找对对应角和对应边.4、C【分析】根据幂的乘方,把变形为,然后把代入计算即可.【题目详解】∵,∴=.故选C.【题目点拨】本题考查了幂的乘方运算,熟练掌握幂的乘方法则是解答本题的关键.幂的乘方底数不变,指数相乘.5、C【解题分析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将1.11111111134用科学记数法表示,故选C.考点:科学记数法6、C【分析】分两种情况:腰长为12和底边长为12,分别利用等腰三角形的定义进行讨论即可.【题目详解】若腰长为1,则底边为此时,三角形三边为,可以组成三角形,符合题意;若底边长为1,则腰长为此时,三角形三边为,可以组成三角形,符合题意;综上所述,腰长为12或1.故选:C.【题目点拨】本题主要考查等腰三角形的定义,掌握等腰三角形的定义并分情况讨论是解题的关键.7、A【分析】根据最简二次根式的定义,逐一判断选项,即可得到答案.【题目详解】∵=,,=,∴、、不是最简二次根式,是最简二次根式,故选A.【题目点拨】本题主要考查最简二次根式的定义,掌握“被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式”的二次根式是最简二次根式,是解题的关键.8、A【分析】根据方差的意义比较出甲、乙、丙、丁的大小,即可得出答案.【题目详解】解:∵甲的方差最小,∴成绩发挥最稳定的是甲,故选:A.【题目点拨】本题考查的知识点是方差的意义,方差是用来反映一组数据整体波动大小的特征量,方差越小,数据的波动越小.9、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.000000126=1.26×10-1.

故选:B.【题目点拨】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、D【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),得出,④正确;由△AEC与△DCE同底等高,得出,进而得出.⑤不正确.【题目详解】解:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴∠EAD=∠AEB,

又∵AE平分∠BAD,

∴∠BAE=∠DAE,

∴∠BAE=∠BEA,

∴AB=BE,

∵AB=AE,

∴△ABE是等边三角形,②正确;

∴∠ABE=∠EAD=60°,

∵AB=AE,BC=AD,

∴△ABC≌△EAD(SAS),①正确;

∵△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),

∴,④正确;

又∵△AEC与△DEC同底等高,

∴,

∴,⑤不正确.

若AD与AF相等,即∠AFD=∠ADF=∠DEC,题中未限定这一条件,

∴③不一定正确;

故正确的为:①②④.故选:D.【题目点拨】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定.此题比较复杂,注意将每个问题仔细分析.二、填空题(每小题3分,共24分)11、【分析】根据分式有意义的条件:分母不能为0即可确定的取值范围.【题目详解】∵分式有意义解得故答案为:.【题目点拨】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.12、1.【题目详解】试题解析:设点A(0,a)、B(b,0),

∴OA=a,OB=-b,

∵△AOB≌△COD,

∴OC=a,OD=-b,

∴C(a,0),D(0,b),

∴k1=,k2=,

∴k1•k2=1,

【题目点拨】本题考查了两直线相交于平行,全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.13、49【分析】先计算出BC的长,再由勾股定理求出阴影部分的面积即可.【题目详解】∵∠ACB=90,,∴,∴阴影部分的面积=,故答案为:49.【题目点拨】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC的平方是解题的关键.14、π【解题分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【题目详解】根据实数比较大小的方法,可得π>>0>−>−5,故实数-5,-,0,π,中最大的数是π.故答案为π.【题目点拨】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.15、2020【分析】已知等式利用完全平方公式化简整理即可求出未知式子的值.【题目详解】∵,∴故答案是:【题目点拨】本题考查了完全平方公式,熟练掌握公式是解题的关键.16、>【分析】比较二次根式,只要把根号外面的数根据二次根式的性质移到根号里面,比较即可.【题目详解】解:=,=,∵>,∴>,故答案为:>.【题目点拨】此题主要考查二次根式的比较,运用二次根式性质,把根号外的数移到根号里面是解题的关键.17、10【分析】根据等腰三角形的性质可分两种情况讨论:①当2为腰时②当4为腰时;再根据三角形的三边关系确定是否能构成三角形,再计算三角形的周长,即可完成.【题目详解】①当2为腰时,另两边为2、4,2+2=4,不能构成三角形,舍去;②当4为腰时,另两边为2、4,2+4>4,能构成三角形,此时三角形的周长为4+2+4=10故答案为10【题目点拨】本题主要考查等腰三角形的性质,还涉及了三角形三边的关系,熟练掌握以上知识点是解题关键.18、55°或35°.【分析】根据等腰三角形的性质及三角形内角和定理进行分析,注意分类讨论思想的运用.【题目详解】如图①,∵AB=AC,∠ABD=20°,BD⊥AC于D,∴∠A=70°,∴∠ABC=∠C=(180°-70°)÷2=55°;如图②,∵AB=AC,∠ABD=20°,BD⊥AC于D,∴∠BAC=20°+90°=110°,∴∠ABC=∠C=(180°-110°)÷2=35°.故答案为55°或35°.【题目点拨】此题主要考查等腰三角形的性质,三角形内角和定理及三角形外角的性质,进行分类讨论是解题的关键.三、解答题(共66分)19、见解析【分析】(1)利用轴对称图形的性质得出符合题意的图形即可;(2)利用中心对称图形的性质得出符合题意的图形即可;(3)利用轴对称图形以及中心对称图形的性质得出即可.【题目详解】【题目点拨】本题考查利用轴对称设计图案以及利用利用旋转设计图案,熟练掌握轴对称图形的性质以及中心对称图形的性质是解题关键.20、(1)<;(2)10;1000;1;无穷大;(3)>【分析】(1)两个正实数,这个数越大,则它的倒数越小,判断出与的大小关系即可;(2)首先求出0.1、0.001、0.00001的倒数各是多少;然后判断出当正实数x无限小(无限接近于0),那么它的倒数无穷大;(3)根据:0<x<2,可得:>.【题目详解】解:(1)5>2,而<,规律:若a>b>0,那么与的大小关系是:<,故答案为:<;(2)对于很小的数0.1、0.001、0.00001,它们的倒数=10;=1000;=1.规律:当正实数x无限小(无限接近于0),那么它的倒数无穷大,故答案为:10;1000;1;无穷大;(3)∵0<x<2,∴>.故答案为:>.【题目点拨】本题考查了正实数的倒数的大小比较以及规律,注意探究发现规律是解题的关键.21、(1)见解析,A1(-1,2),B1(-3,1),C1(-4,3);(2);(3)见解析.【分析】(1)分别作出点A,B,C关于y轴对称的点,然后顺次连接即可;(2)用矩形面积减去三个小三角形面积,即可求得面积;(3)作点C关于x轴对称的点,连接交x轴于点即可.【题目详解】(1)关于y轴对称的如图所示:三个顶点的坐标分别是:;(2)△ABC的面积为;(3)如图所示:点P即为所求.∵点、关于轴对称,∴,∴,此时最短.【题目点拨】本题考查轴对称变换、三角形的面积、利用轴对称求最短路径等知识,解答本题的关键是根据网格结构作出对应点的位置.22、(1)a=,b=2,k=-2;(2)S△AOB=【解题分析】(1)把A、B两点坐标代入直线解析式求出a,b的值,从而确定A、B两点坐标,再把A(或B)点坐标代入双曲线解析式求出k的值即可;(2)设直线AB分别交x轴、y轴于点E,F,根据S△AOB=S△EOF-S△AEO-S△BFO求解即可.【题目详解】(1)将点A(-4,a)、B(-1,b)分别代入表达式中,得:;,∴A(-4,)、B(-1,2)将B(-1,2)代入y=中,得k=-2所以a=,b=2,k=-2(2)设直线AB分别交x轴、y轴于点E,F,如图,对于直线,分别令y=0,x=0,解得:X=-5,y=,∴E(-5,0),F(0,)由图可知:S△AEO=×OE×AC=,S△BFO=×OF×BD=,S△EOF=×OE×OF=∴S△AOB=S△EOF-S△AEO-S△BFO=【题目点拨】本题主要考查了反比例函数与一次函数的交点问题,需要掌握根据待定系数法求函数解析式的方法.解答此类试题的依据是:①求一次函数解析式需要知道直线上两点的坐标;②根据三角形的面积及一边的长,可以求得该边上的高.23、(1)11;(2)【分析】(1)原式利用完全平方公式展开,合并即可得到答案;(2)原式利用多项式除以单项式法则计算即可得到结果.【题目详解】(1)(2)原式【题目点拨】本题主要考查了二次根式的混合运算,正确化简二次根式是解题的关键.24、(1);(2).【分析】(1)根据多项式乘多项式法则计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论