七台河市重点中学2024届八上数学期末联考试题含解析_第1页
七台河市重点中学2024届八上数学期末联考试题含解析_第2页
七台河市重点中学2024届八上数学期末联考试题含解析_第3页
七台河市重点中学2024届八上数学期末联考试题含解析_第4页
七台河市重点中学2024届八上数学期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七台河市重点中学2024届八上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知=6,=3,则的值为()A.9 B. C.12 D.2.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是()A. B. C. D.3.在,分式的个数有(

)A.3个 B.4个 C.5个 D.6个4.下列图形中,有且只有三条对称轴的是()A. B. C. D.5.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2 B.﹣ C.0 D.6.在平面直角坐标系中,点A(m,-2)与点B(-3,n)关于y轴对称,则点(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,圆的直径为1个单位长度,圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动一周,点A到达的位置,则点表示的数是()A. B. C. D.8.下列图形中是轴对称图形的有()A. B. C. D.9.已知关于x的方程=3的解是正数,那么m的取值范围为()A.m>-6且m≠-2 B.m<6 C.m>-6且m≠-4 D.m<6且m≠-210.平移前后两个图形是全等图形,对应点连线()A.平行但不相等 B.不平行也不相等C.平行且相等 D.不相等11.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6 B.5 C.4 D.312.如图,将甲图中的阴影部分无重叠、无缝隙得拼成乙图,根据两个图形中阴影部面积关系得到的等式是()A.a2+b2=(a+b)(a-b) B.a2+2ab+b2=(a+b)2C.a2-2ab+b2=(a-b)2 D.(a+b)2-(a-b)2=4ab二、填空题(每题4分,共24分)13.化简:的结果是_____.14.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____15.若多项式分解因式的结果为,则的值为__________.16.平面直角坐标系中,点与点之间的距离是____.17.在平面直角坐标系中,将点先向右平移个单位长度,再向下平移个单位长度后所得到的点坐标为_________.18.已知,则________________.三、解答题(共78分)19.(8分)梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A,B两种品牌的龟苓膏粉共1000包.(1)若小王按需购买A,B两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出y与x之间的函数关系式;(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本?(运算结果取整数)20.(8分)如图,在四边形ABCD中,,∠A=∠C,CD=2AD,F为CD的中点,连接BF(1)求证:四边形ABCD是平行四边形.(2)求证:BF平分∠ABC.21.(8分)已知:中,过B点作BE⊥AD,.(1)如图1,点在的延长线上,连,作于,交于点.求证:;(2)如图2,点在线段上,连,过作,且,连交于,连,问与有何数量关系,并加以证明;(3)如图3,点在CB延长线上,且,连接、的延长线交于点,若,请直接写出的值.22.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?23.(10分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上。在建立平面直角坐标系后,点B的坐标为(-1,2).(1)把△ABC向下平移8个单位后得到对应的△,画出△,并写出坐标;(2)以原点O为对称中心,画出与△关于原点O对称的△,并写出点的坐标.24.(10分)计算:(1)(﹣2a)2•(a﹣1)(2)25.(12分)在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是.(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.26.已知:线段,以为公共边,在两侧分别作和,并使.点在射线上.(1)如图l,若,求证:;(2)如图2,若,请探究与的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,若,过点作交射线于点,当时,求的度数.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.【题目详解】解:∵xm=6,xn=3,

∴x2m-n=(xm)2÷xn=62÷3=1.

故选:C.【题目点拨】本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(xm)2÷xn是解题的关键.2、D【分析】根据轴对称图形的概念判断即可.【题目详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【题目点拨】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3、B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:,分式的有:共有4个.故选:B【题目点拨】此题主要考查了分式概念,关键是掌握分式的分母必须含有字母.4、A【分析】根据轴对称图形的定义逐项分析即可,一个图形的一部分,沿着一条直线对折后两部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.【题目详解】A.有3条对称轴;B.有1条对称轴;C.不是轴对称图形;D.不是轴对称图形.故选:A.

【题目点拨】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.5、A【解题分析】反例中的n满足n<1,使n1-1≥0,从而对各选项进行判断.【题目详解】解:当n=﹣1时,满足n<1,但n1﹣1=3>0,所以判断命题“如果n<1,那么n1﹣1<0”是假命题,举出n=﹣1.故选:A.【题目点拨】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6、D【分析】根据点A(m,-2)与点B(-3,n)关于y轴对称求出m、n的值,即可得到点(m,n)的坐标,从而判断其所在的象限.【题目详解】∵点A(m,-2)与点B(-3,m)关于y轴对称∴解得∴点(3,-2)在第四象限故答案为:D.【题目点拨】本题考查了关于y轴对称的点的问题,掌握关于y轴对称的点的性质、象限的定义以及性质是解题的关键.7、D【解题分析】先求出圆的周长,再根据数轴的特点进行解答即可.【题目详解】∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是-π-1;当圆向右滚动时点A′表示的数是π-1.故选:D.【题目点拨】本题考查的是实数与数轴的特点,熟知实数与数轴上的点是一一对应关系是解答此题的关键.8、B【解题分析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【题目详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B.【题目点拨】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.9、C【分析】先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.【题目详解】将分式方程转化为整式方程得:1x+m=3x-2解得:x=m+2.∵方程得解为正数,所以m+2>0,解得:m>-2.∵分式的分母不能为0,∴x-1≠0,∴x≠1,即m+2≠1.∴m≠-3.故m>-2且m≠-3.故选C.【题目点拨】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.10、C【分析】根据平移的性质即可得出答案.【题目详解】解:平移前后两个图形是全等图形,对应点连线平行且相等.故选:C.【题目点拨】本题利用了平移的基本性质:①图形平移前后的形状和大小没有变化,只是位置发生变化;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11、D【分析】过点作于,然后利用的面积公式列式计算即可得解.【题目详解】解:过点作于,是的角平分线,,,,解得.故选:.【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.12、C【分析】由图甲可知阴影部分的面积=大正方形的面积-两个长方形的面积+两个长方形重合部分的面积,由图乙可知阴影部分是边长为a-b的正方形,从而可知其面积为(a-b)2,从而得出结论.【题目详解】解:由图甲可知:阴影部分的面积=a2-2ab+b2由图乙可知:阴影部分的面积=(a-b)2∴a2-2ab+b2=(a-b)2故选C.【题目点拨】此题考查的是完全平方公式的几何意义,掌握阴影部分面积的两种求法是解决此题的关键.二、填空题(每题4分,共24分)13、【解题分析】原式=,故答案为.14、等腰三角形的底角是钝角或直角【解题分析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.

故答案是:等腰三角形的两底都是直角或钝角.15、-1【分析】根据多项式的乘法法则计算,与比较求出a和b的值,然后代入a+b计算.【题目详解】∵=x2+x-2,∴=x2+x-2,∴a=1,b=-2,∴a+b=-1.故答案为:-1.【题目点拨】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.16、1【分析】根据点的坐标与勾股定理,即可求解.【题目详解】根据勾股定理得:AB=,故答案是:1.【题目点拨】本题主要考查平面直角坐标系中两点的距离,掌握勾股定理是解题的关键.17、(-1,0)【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【题目详解】解:点先向右平移个单位长度,再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【题目点拨】此题主要考查了坐标与图形的变化-平移:向右平移a个单位,坐标P(x,y)得到P'(x+a,y);向左平移a个单位,坐标P(x,y)得到P'(x-a,y);向上平移a个单位,坐标P(x,y)得到P'(x,y+a);向下平移a个单位,坐标P(x,y)得到P'(x,y-a).18、1【分析】分析:把变形为,代入后,再变形为即可求得最后结果.【题目详解】∵,∴,,,,,=1.故答案为:1.【题目点拨】本题主要考查代数式的求值,解题的关键是熟练掌握平方差公式及其灵活变形.三、解答题(共78分)19、(3)小王购买A,B两种品牌龟苓膏粉分别为633包,433包(4)y=-4x+43533(3)A品牌的龟苓膏粉每包定价不低于44元时才不亏本【解题分析】试题分析:(3)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,根据题意列方程解出即可;(4)根据题意,可得y=533+3.8×[43x+45(3333﹣x)],据此求出y与x之间的函数关系式即可.(3)先求出小王购买A、B两种品牌龟苓膏粉分别为多少包,然后设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,所以345z+875(z+5)≥43333+8×3333,据此求出A品牌的龟苓膏粉每包定价不低于多少元时才不亏本即可.试题解析:(3)设小王需购买A、B两种品牌龟苓膏粉分别为x包、y包,则,解得:,∴小王购买A、B两种品牌龟苓膏粉分别为633包、433包;(4)y=533+3.8×[43x+45(3333﹣x)]=533+3.8×[45333﹣5x]=533+43333﹣4x=﹣4x+43533,∴y与x之间的函数关系式是:y=﹣4x+43533;(3)由(4),可得:43333=﹣4x+43533,解得x=345,∴小王购买A、B两种品牌龟苓膏粉分别为345包、875包,设A种品牌龟苓膏粉的售价为z元,则B种品牌龟苓膏粉的售价为z+5元,∴345z+875(z+5)≥43333+8×3333,解得z≥4.645,∴A品牌的龟苓膏粉每包定价不低于44元时才不亏本.考点:3.一次函数的应用;4.综合题.20、(1)证明见解析;(2)证明见解析.【分析】(1)先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定可得,最后根据平行四边形的判定即可得证;(2)先根据线段中点的定义可得,从而可得,再根据平行四边形的性质可得,然后根据等腰三角形的性质可得,最后根据平行线的性质可得,从而可得,由此即可得证.【题目详解】(1),,,,,四边形ABCD是平行四边形;(2)点F为CD的中点,,,,四边形ABCD是平行四边形,,,,,,,故BF平分.【题目点拨】本题考查了平行四边形的判定与性质、平行线的判定与性质、角平分线的定义、等腰三角形的性质等知识点,熟练掌握平行四边形的判定与性质是解题关键.21、(1)见详解,(2),证明见详解,(3).【分析】(1)欲证明,只要证明即可;(2)结论:.如图2中,作于.只要证明,推出,,由,推出即可解决问题;(3)利用(2)中结论即可解决问题;【题目详解】(1)证明:如图1中,于,,,,,(AAS),.(2)结论:.理由:如图2中,作于.,,,,,,,,,,,,,,,.(3)如图3中,作于交AC延长线于.,,,,,,,,,,,,,,,.,设,则,,.【题目点拨】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.22、(1)第一批饮料进货单价为8元.(2)销售单价至少为11元.【解题分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【题目详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【题目点拨】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.23、(1)画图见解析;A1(-5,-6);(2)画图见解析;B2(1,6).【分析】(1)根据网格结构找出点A、B、C向下平移8个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1坐标;(2)根据网格结构找出点A1、B1、C1关于原点O对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点B2坐标.【题目详解】(1)△A1B1C1如图所示,A1(﹣5,﹣6);(2)△A2B2C2如图所示,B2(1,6)【题目点拨】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24、(1)4a3﹣4a2;(2)【分析】(1)先算乘方、再用整式乘法运算法则计算即可;(2)先对各分式的分母因式分解,然后按照分式乘除运算法则计算即可.【题目详解】解:(1)原式=4a2(a﹣1)=4a3﹣4a2;(2)原式====.【题目点拨】本题考查了整式的乘法和分式的四则混合运算,解答的关键在先算乘法和对分式的分母进行因式分解.25、(1)1<AD<7;(2)①2<EF<6;②CE⊥ED,理由见解析【分析】(1)在△ABE中,根据三角形的三边关系定理即可得出结果;(2)①延长ED到点N,使,连接CN、FN,由SAS证得,得出,由等腰三角形的性质得出,在△CFN中,根据三角形的三边关系定理即可得出结果;②延长CE与DA的延长线交于点G,易证DG∥BC,得出,由ASA证得,得出,即可证得,由,根据等腰三角形的性质可得出.【题目详解】(1)在△ABE中,由三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论