2023年安徽省阜阳市高职单招数学月考卷题库(含答案)_第1页
2023年安徽省阜阳市高职单招数学月考卷题库(含答案)_第2页
2023年安徽省阜阳市高职单招数学月考卷题库(含答案)_第3页
2023年安徽省阜阳市高职单招数学月考卷题库(含答案)_第4页
2023年安徽省阜阳市高职单招数学月考卷题库(含答案)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年安徽省阜阳市高职单招数学摸底卷题库(含答案)学校:________班级:________姓名:________考号:________

一、单选题(50题)1.函数f(x)=ln(2-x)的定义域是()

A.[-2,2]B.(-2,2)C.(-∞,2)D.(-2,+∞)

2.在某次1500米体能测试中,甲、乙2人各自通过的测试的概率分别是2/5,3/4,只有一人通过的概率是()

A.3/5B.3/10C.1/20D.11/20

3.若抛物线y²=2px(p>0)的准线与圆(x-3)²+y²=16相切,则p的值为()

A.1/2B.1C.2D.4

4.若平面α//平面β,直线a⊂α,直线b⊂β那么直线a、b的位置关系是()

A.垂直B.平行C.异面D.不相交

5.双曲线(x²/17)-(y²/8)=1的右焦点的坐标为()

A.(0,5)B.(0,-5)C.(5,0)D.(-5,0)

6.y=log₂(3x-6)的定义域是()

A.(-∞,+∞)B.(1,+∞)C.(-∞,-2)∪(2,+∞)D.(2,+∞)

7.两条平行直线l₁:3x+4y-10=0和l₂:6x+8y-7=0的距离为()

A.1B.17C.13D.13/10

8.抛物线y²=4x上的一点P至焦点F的距离为3,则P到轴y的距离为()

A.4B.3C.2D.1

9.已知平行四边形的三个顶点A.B.C的坐标分别是(−2,1),(−1,3),(3,4),则顶点D的坐标是()

A.(2,1)B.(2,2)C.(1,2)D.(1,3)

10.某射手射中10环的概率为0.28,射中9环的概率为0.24,射中8环的概率为0.19,则这个射手一次射中低于8环的概率为()

A.0.71B.0.29C.0.19D.0.52

11.已知圆的方程为x²+y²-4x+2y-4=0,则圆的半径为()

A.±3B.3C.√3D.9

12.在等比数列{an}中,已知a₃,a₅是方程x²-12x+9=0的两个根,则a₄=()

A.12B.9C.±2√3D.±3

13.已知向量a=(2,-3),向量b=(一6,y),且a⊥b,则y=()

A.-9B.9C.4D.-4

14.直线l₁的方程为x-√3y-√3=0,直线l₂的倾斜角为l₁倾斜角的2倍,且l₂经过原点,则l₂的方程为()

A.2x-√3y=0B.2x+√3y=0C.√3x+y=0D.√3x—y=0

15.f(-1)是定义在R上是奇函数,且对任意实数x,有f(x+4)=f(x),若f(-1)=3.则f(4)+f(5)=()

A.-3B.0C.3D.6

16.己知tanα=2,则(2sinα-cosα)/(sinα+3cosα)=()

A.3/5B.5/3C.1/4D.2

17.cos78°*cos18°+sin18°sin102°=()

A.-√3/2B.√3/2C.-1/2D.1/2

18.若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=()

A.4B.3C.2D.0

19.函数y=sin²2x-cos²2x的最小正周期是()

A.Π/2B.ΠC.(3/2)ΠD.2Π

20.已知定义在R上的函数F(x)=f(x)-4是奇函数,且满足f(-3)=1,则f(0)+f(3)=()

A.4B.6C.9D.11

21.有10本书,第一天看1本,第二天看2本,不同的选法有()

A.120种B.240种C.360种D.720种

22.在复平面内,复数z=i(-2+i)对应的点位于()

A.第一象限B.第二象限C.第三象限D.第四象限

23.抛物线y²=4x的焦点为()

A.(1,0)B.(2,0)C.(3,0)D.(4,0)

24.函数y=是√(3-x)的定义域为()

A.{x|x≠3}B.{x|x<=3}C.{x|x<3}D.{x|x>=3}

25.抛物线y²=4x的准线方程是()

A.x=-1B.x=1C.y=-1D.y=-1

26.下列幂函数中过点(0,0),(1,1)的偶函数是()

A.y=x^(1/2)B.y=x^4C.y=x^(-2)D.y=x^(1/3)

27.设lg2=m,lg3=n,则lg12可表示为()

A.m²nB.2m+nC.2m/nD.mn²

28.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下列抽样方法中,最合理的抽样方法是()

A.简单随机抽样B.简单随机抽样C.按学段分层抽样D.系统抽样

29.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条直线与一个平面平行,则另一条直线一定与这个平面平行.

A.0B.1C.2D.3

30.log₁₀1000等于()

A.1B.2C.3D.4

31.在△ABC中,a=√3,b=2,c=1,那么A的值是()

A.Π/2B.Π/3C.Π/4D.Π/6

32.已知角α终边上一点的坐标为(-5,-12),则下列说法正确的是()

A.sinα=12/13B.tanα=5/12C.cosα=-12/13D.cosα=-5/13

33.以点P(-4,3)为圆心的圆与直线2x+y-5=0相离,则圆半径取值范围是()

A.(0,2)B.(0,√5)C.(0,2√5)D.(0,10)

34.在一个口袋中有除了颜色外完全相同的5个红球3个黄球、2个蓝球,从中任意取出5个球,则刚好2个红球、2个黄球、1个蓝球的概率是()

A.2/5B.5/21C.1/2D.3/5

35.设f((x)是定义在R上的奇函数,已知当x≥0时,f(x)=x³-4x³,则f(-1)=()

A.-5B.-3C.3D.5

36.圆x²+y²-4x+4y+6=0截直线x-y-5=0所得弦长等于()

A.√6B.1C.5D.5√2/2

37.若等差数列前两项为-3,3,则数列的公差是多少().

A.-3B.3C.0D.6

38.设集合M={x│0≤x<3,x∈N},则M的真子集个数为()

A.3B.6C.7D.8

39.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()

A.-1B.1C.3D.7

40.以圆x²+2x+y²=0的圆心为圆心,半径为2的圆的方程()

A.(x+1)²+y²=2B.(x+1)²+y²=4C.(x−1)²+y²=2D.(x−1)²+y²=4

41.抛物线y²=8x,点P到点(2,0)的距离为3,则点P到直线x=-2的距离是()

A.2√2B.2C.3D.4

42.过点P(1,-1)垂直于X轴的直线方程为()

A.x+1=0B.x-1=0C.y+1=0D.y-1=0

43.参加一个比赛,需在4名老师,6名男学生和4名女学生中选一名老师和一名学生参加,不同的选派方案共有多少种?()

A.14B.30C.40D.60

44.已知{an}是等比数列,a₁=2,a₂+a₃=24,则公比q的值为()

A.-4或3B.-4或-3C.-3或4D.3或4

45.从1、2、3、4、5五个数中任取一个数,取到的数字是3或5的概率为()

A.1/5B.2/5C.3/5D.4/5

46.已知向量a=(2,1),b=(3,5),则|2a一b|=

A.2B.√10C.√5D.2√2

47.“0<x<1”是“x²

A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件

48.下列函数在区间(0,+∞)上为减函数的是()

A.y=3x-1B.f(x)=log₂xC.g(x)=(1/2)^xD.A(x)=sinx

49.要得到函数y=cos2x的图象,只需将函数y=-sin2x的图象沿x轴()

A.向右平移Π/4个单位B.向左平移Π/4个单位C.向右平移Π/8个单位D.向左平移Π/8个单位

50.设a>b,c>d,则下列不等式成立的是()

A.ac>bdB.b+d

d/bD.a-c>b-d

二、填空题(20题)51.已知向量a=(1/2,cosα),b=(-√3/2,sinα),且a⊥b,则sinα=______。

52.向量a=(一2,1),b=(k,k+1),若a//b,则k=________。

53.已知点A(1,2)和B(3,-4),则以线段AB为直径的圆的标准方程是________。

54.以点(−2,−1)为圆心,且过p(−3,0)的圆的方程是_________;

55.甲乙两人比赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得的环数如下:0,1,5,9,10,那么成绩较为稳定的是________。

56.已知直线kx-y-1=0与直线x+2y=0互相平行,则k=_____。

57.已知点A(1,2)和点B(3,-4),则以线段AB的中点为圆心,且与直线x+y=5相切的圆的标准方程是________。

58.已知过抛物线y²=4x焦点的直线l与抛物有两个交点A(x₁,y₁)和B(x₂,y₂)如果x₁+x₂=6,则|AB|=_________。

59.已知向量a=(x-3,2),b(1,x),若a⊥b,则x=________。

60.已知函数f(x)=Asinwx,(A>0,w>0)的最大值是2,最小正周期为Π/2,则函数f(x)=________。

61.lg100-log₂1+(√3-1)=___________;

62.同时投掷两枚骰子,则向上的点数和是9的概率是________。

63.直线x+2y+1=0被圆(x一2)²+(y-1)²=25所截得的弦长为______。

64.在空格内填入“充要条件”、“必要条件”、“充要条件”、或“非充分且非必要条件”⑴“x2-4=0”是“x-2=0”的_________⑵“x<1”是“x<3”的__________⑶方程ax²+bx+c=0(a≠0),“ac<0”是“方程有实根”的___________(4)“x²+y²≠0”是“x、y不全为零”的___________

65.已知A(1,3),B(5,1),则线段AB的中点坐标为_________;

66.将一个容量为n的样本分成3组,已知第1,2组的频率为0.2,0.5,第三组的频数为12,则n=________。

67.函数f(x)=1+3sin(x+2)的最大值为________。

68.某球的表面积为36Πcm²,则球的半径是________cm

69.以点M(3,1)为圆心的圆与x轴相交于A,B两点若🔺MAB为直角三角形、则该圆的标准方程为________。

70.设圆的方程为x²+y²-4y-5=0,其圆心坐标为________。

三、计算题(10题)71.求函数y=cos²x+sinxcosx-1/2的最大值。

72.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;

73.某社区从4男3女选2人做核酸检测志愿者,选中一男一女的概率是________。

74.书架上有3本不同的语文书,2本不同的数学书,从中任意取出2本,求(1)都是数学书的概率有多大?(2)恰有1本数学书概率

75.解下列不等式x²>7x-6

76.我国是一个缺水的国家,节约用水,人人有责;某市为了加强公民的节约用水意识,采用分段计费的方法A)月用水量不超过10m³的,按2元/m³计费;月用水量超过10m³的,其中10m³按2元/m³计费,超出部分按2.5元/m³计费。B)污水处理费一律按1元/m³计费。设用户用水量为xm³,应交水费为y元(1)求y与x的函数关系式(2)张大爷家10月份缴水费37元,问张大爷10月份用了多少水量?

77.解下列不等式:x²≤9;

78.数列{an}为等差数列,a₁+a₂+a₃=6,a₅+a₆=25,(1)求{an}的通项公式;(2)若bn=a₂n,求{bn}前n项和Sn;

79.计算:(4/9)^½+(√3+√2)⁰+125^(-⅓)

80.已知集合A={X|x²-ax+15=0},B={X|x²-5x+b=0},如果A∩B={3},求a,b及A∪B

参考答案

1.C

2.D

3.C[解析]讲解:题目抛物线准线垂直于x轴,圆心坐标为(3,0)半径为4,与圆相切则为x=−1或x=7,由于p>0,所以x=−1为准线,所以p=2

4.D[解析]讲解:两面平行不会有交点,面内的直线也不可能相交,选D

5.C

6.D解析:由3x-6>0得:x>2,选D

7.D

8.C

9.B根据平行四边形的性质,对边平行且相等,所以对边的向量相等,向量AB=向量DC,所以(-1,3)-(-2,1)=(3,4)-(x,y)解得D点坐标(x,y)=(2,2),故选B

10.B

11.B圆x²+y²-4x+2y-4=0,即(x-2)²+(y+1)²=9,故此圆的半径为3考点:圆的一般方程

12.D

13.D

14.D

15.A

16.A

17.D

18.D

19.A

20.D

21.C

22.C

23.A抛物线方程为y²=2px(p>0),焦点为(P/2,0),2p=4,p=2c,p/2=1。考点:抛物线焦点

24.B

25.A

26.B[解析]讲解:函数图像的考察,首先验证是否过两点,C定义域不含x=0,因为分母有自变量,然后验证偶函数,A选项定义域没有关于原点对称,D选项可以验证是奇函数,答案选B。

27.B

28.C

29.C

30.C

31.B

32.D

33.C

34.B

35.C

36.A由圆x²+y²-4x+4y+6=0,易得圆心为(2,-2),半径为√2.圆心(2,-2)到直线x-y-5=0的距离为√2/2.利用几何性质,则弦长为2√(√2)²-(√2/2)²=√6。考点:和圆有关的弦长问题.感悟提高:计算直线被圆截得弦长常用几何法,利用圆心到直线的距离,弦长的一半,及半径构成直角三角形计算,即公式d²+(AB/2)²=r²,d是圆到直线的距离,r是圆半径,AB是弦长.

37.D[解析]讲解:考察等差数列的性质,公差为后一项与前一项只差,所以公差为d=3-(-3)=6

38.C[解析]讲解:M的元素有3个,子集有2^3=8个,减去一个自身,共有7个真子集。

39.B

40.B[解析]讲解:圆的方程,重点是将方程化为标准方程,(x+1)²+y²=1,半径为2的话方程为(x+1)²+y²=4

41.A

42.B

43.C

44.A

45.B

46.B

47.A

48.C[解析]讲解:考察基本函数的性质,选项A,B为增函数,D为周期函数,C指数函数当底数大于0小于1时,为减函数。

49.A

50.B本题是选择题可以采用特殊值法进行检验。因为a>b,c>d,所以设B=-1,a=-2,d=2,c=3,故选B.考点:基本不等式

51.√3/2

52.-2/3

53.(x-2)²+(y+1)²=10

54.(x+2)²+(y+1)²=2

55.甲

56.-1/2

57.(x-2)²+(y+1)²=8

58.8

59.1

60.2sin4x

61.3

62.1/9

63.4√5

64.(1)必要非充分条件(2)充分非必要条件(3)充分非必要条件(4)充要条件

65.(3,2)

66.40

67.4

68.3

69.(x-3)²+(y-1)²=2

70.y=(1/2)x+2y

71.解:y=(1+cos2x)/2+1/2sin2x=√2/2sin(2x+Π/4)所以sin(2x+Π/4)∈[-1,1],所以原函数的最大值为√2/2。

72.解:an=a1+(n-1)d所以a8=a1+7d所以30=2+7d所以d=42所以an=a1+(n-1)d=2+(n-1)4=4n-2又因为Sn=na1+1/2n(n-1)d所以S5=5a1+1/2×5×4d=5×2+10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论