




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省亳州市名校2024届数学八上期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=1.,则∠A的度数是()A.35 B.40 C.70 D.1102.如图,在中,是的平分线,且,若,则的大小为()A. B. C. D.3.下列计算正确的是()A.a6÷a2=a3 B.(a3)2=a5C.25=±5 D.4.把多项式因式分解,正确的是()A. B. C. D.5.某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A. B. C. D.6.若无解,则m的值是()A.-2 B.2 C.3 D.-37.下列计算正确的是()A.x2•x3=x6 B.(xy)2=xy2 C.(x2)4=x8 D.x2+x3=x58.如图,从标有数字1,2,3.4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是()A.1 B.2 C.3 D.49.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=1.则图中阴影部分的面积为()A.10 B.12 C.16 D.1110.下列命题中,真命题是()A.同旁内角互补 B.在同一平面内,垂直于同一条直线的两条直线平行C.相等的角是内错角 D.有一个角是的三角形是等边三角形二、填空题(每小题3分,共24分)11.我国的纸伞工艺十分巧妙,如图,伞不论张开还是缩拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC和∠EDF,使与始终全等,从而保证伞圈D能沿着伞柄滑动,则的理由是_____.12.分解因式:x2y﹣y=_____.13.一个多边形的内角和比四边形的内角和多540°,并且这个多边形的各内角都相等,这个多边形的每个内角等于______度.14.等腰三角形的两边长分别为2和4,则其周长为_____.15.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=_____.16.如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=3,P为AB上一动点,则PD的最小值为_____.17.如图,在中,和的平分线相交于点,过点作交于,交于,过点作于下列结论:①;②点到各边的距离相等;③;④设,,则;⑤.其中正确的结论是.__________.18.若,则______.三、解答题(共66分)19.(10分)如图,三个顶点的坐标分别为,,.(1)请画出关于轴成轴对称的图形,并写出、、的坐标;(2)求的面积;(3〉在轴上找一点,使的值最小,请画出点的位置.20.(6分)如图,,,为中点(1)若,求的周长和面积.(2)若,求的面积.21.(6分)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.22.(8分)在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积23.(8分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子.(1)图1是由几个面积不等的小正方形与小长方形拼成的一个边长为a+b+c的正方形,试用不同的方法计算这个正方形的面积,你发现了什么结论?请写出来;(2)图2是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连结BD、BF,若两正方形的边长满足a+b=10,ab=20,试求阴影部分的面积.
24.(8分)如图,已知在中,,,,是上的一点,,点从点出发沿射线方向以每秒个单位的速度向右运动.设点的运动时间为.连结.(1)当秒时,求的长度(结果保留根号);(2)当为等腰三角形时,求的值;(3)过点做于点.在点的运动过程中,当为何值时,能使?25.(10分)已知:如图,点分别在和上,,是上一点,的延长线交的延长线于点.求证:(1);(2).26.(10分)(1)因式分解:﹣x1+x﹣;(1)解分式方程:=1.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】设∠A的度数是x,则∠C=∠B=,∵BD平分∠ABC交AC边于点D∴∠DBC=,∴++1=180°,∴x=40°,∴∠A的度数是40°.故选:B.2、B【分析】在AB上截取AC′=AC,连接DC′,由题知AB=AC+CD,得到DC=C′B,可证得△ADC≌△ADC′,即可得到△BDC′是等腰三角形,设∠B=x,利用三角形的内角和公式即可求解.【题目详解】解:在AB上截取AC′=AC,连接DC′如图所示:∵AB=AC+CD∴BC′=DC∵AD是∠BAC的角平分线∴∠C′AD=∠DAC在△ACD和△AC′D中∴△ACD≌△AC′D∴C′D=DC,∠ACD=∠AC′D∴DC′=BC′∴△BC′D是等腰三角形∴∠C′BD=∠C′DB设∠C′BD=∠C′DB=x,则∠ACD=∠AC′D=2x∵∠BAC=81°∴x+2x+81°=180°解得:x=33°∴∠ACB=33°×2=66°故选:B.【题目点拨】本题主要考查的是全等三角形的判定以及角平分线的性质,掌握全等三角形的判定和角平分线的性质是解题的关键.3、D【题目详解】解:A、a6÷a2=a6-2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、25=5,表示25的算术平方根式5,25≠±5,故本选项错误;D、3-8故选D.【题目点拨】本题考查立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法.4、D【分析】根据题意首先提取公因式a,进而利用十字相乘法分解因式得出即可.【题目详解】解:.故选:D.【题目点拨】本题主要考查提取公因式法以及十字相乘法分解因式,熟练并正确利用十字相乘法分解因式是解题的关键.5、A【解题分析】设安排x人加工A零件,加工B零件的是26-x,,所以选A.6、C【解题分析】试题解析:方程两边都乘(x-4)得:m+1-x=0,∵方程无解,∴x-4=0,即x=4,∴m+1-4=0,即m=3,故选C.点睛:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7、C【分析】根据同底数幂的乘法法则、积的乘方、幂的乘方、合并同类项.【题目详解】解:A.x2•x3=x5,故原题计算错误;B.(xy)2=x2y2,故原题计算错误;C.(x2)4=x8,故原题计算正确;D.x2和x3不是同类项,故原题计算错误.故选C.【题目点拨】本题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则.8、B【分析】根据轴对称图形的概念,逐一判断选项,即可得到答案.【题目详解】∵拿走数字1的小正方形,不是轴对称图形,∴A错误;∵拿走数字2的小正方形,可得轴对称图形,∴B正确;∵拿走数字3的小正方形,不是轴对称图形,∴C错误;∵拿走数字4的小正方形,不是轴对称图形,∴D错误;故选B.【题目点拨】本题主要考查轴对称图形的概念,掌握轴对称图形的概念,是解题的关键.9、C【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP=S矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.【题目详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP=S矩形MPFD,又∵S△PBE=S矩形EBNP,S△PFD=S矩形MPFD,∴S△DFP=S△PBE=×2×1=1,∴S阴=1+1=16,故选C.【题目点拨】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.10、B【分析】分别根据平行线的性质和判定、内错角的定义和等边三角形的判定方法逐项判断即可得出答案.【题目详解】解:A、同旁内角互补是假命题,只有在两直线平行的前提下才成立,所以本选项不符合题意;B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,所以本选项符合题意;C、相等的角是内错角,是假命题,所以本选项不符合题意;D、有一个角是的三角形是等边三角形,是假命题,应该是有一个角是的等腰三角形是等边三角形,所以本选项不符合题意.故选:B.【题目点拨】本题考查了真假命题的判断、平行线的性质和判定以及等边三角形的判定等知识,属于基本题型,熟练掌握基本知识是解题的关键.二、填空题(每小题3分,共24分)11、ASA【分析】根据确定三角形全等的条件进行判定即可得解.【题目详解】解:由题意可知:伞柄AP平分∠BAC,∴∠BAP=∠CAP,伞柄AP平分∠EDF,∴∠EDA=∠FDA,且AD=AD,∴△AED≌△AFD(ASA),故答案为:ASA.【题目点拨】本题考查了全等三角形的应用,理解题意确定出全等的三角形以及全等的条件是解题的关键.12、y(x+1)(x﹣1)【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【题目详解】解:x2y﹣y=y(x2﹣1)=y(x+1)(x﹣1).故答案为:y(x+1)(x﹣1).【题目点拨】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13、【分析】设这个多边形的边数是n,根据内角和得到方程,求出边数n及内角和的度数即可得到答案.【题目详解】设这个多边形的边数是n,,解得n=7,内角和是,∴每个内角的度数是度,故答案为:.【题目点拨】此题考查多边形的内角和公式,熟记公式并运用解题是关键.14、10【分析】根据等腰三角形的性质可分两种情况讨论:①当2为腰时②当4为腰时;再根据三角形的三边关系确定是否能构成三角形,再计算三角形的周长,即可完成.【题目详解】①当2为腰时,另两边为2、4,2+2=4,不能构成三角形,舍去;②当4为腰时,另两边为2、4,2+4>4,能构成三角形,此时三角形的周长为4+2+4=10故答案为10【题目点拨】本题主要考查等腰三角形的性质,还涉及了三角形三边的关系,熟练掌握以上知识点是解题关键.15、75°.【分析】根据三角板的性质以及三角形内角和定理计算即可.【题目详解】∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【题目点拨】本题考查了三角板的性质,三角形内角和定理等知识,熟练掌握相关的知识是解题的关键.16、3【解题分析】根据角平分线的作法可知,AD是∠BAC的平分线,再根据角平分线上的点到角的两边距离相等,即可求解.【题目详解】根据作图的过程可知,AD是∠BAC的平分线.根据角平分线上的点到角的两边距离相等,又因为点到直线的距离,垂线段最短可得PD最小=CD=3.故答案为:3.【题目点拨】本题考查的知识点是基本作图,解题关键是掌握角平分线的做法和线段垂直平分线的判定定理.17、①②③⑤【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC=90°+∠A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD=m,AE+AF=n,则S△AEF=mn,故④错误,根据HL证明△AMO≌△ADO得到AM=AD,同理可证BM=BN,CD=CN,变形即可得到⑤正确.【题目详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【题目点拨】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.18、3或5或-5【分析】由已知可知(2x-3)x+3=1,所以要分3种情况来求即可.【题目详解】解:∵∴(2x-3)x+3=1∴当2x-3=1时,x+3取任意值,x=2;当2x-3=-1时,x+3是偶数,x=1;当2x-3≠0且x+3=0时,x=-3∴x为2或者1或者-3时,∴2x+1的值为:5或者3或者-5故答案为:5,-5,3.【题目点拨】本题考查了一个代数式的幂等于1时,底数和指数的取值.找到各种符合条件各种情况,不能丢落.三、解答题(共66分)19、(1)图见解析;的坐标为、的坐标为、的坐标为;(2);(3)见解析.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称的点A1、B1、C1的位置,然后顺次连接即可;(2)依据割补法即可得到△ABC的面积.(3)找出点B关于y轴的对称点B′,连接B′A与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置.【题目详解】解:(1)△A1B1C1如图所示,,,;(2)(3)如图所示,作点B关于y轴的对称点B',连接B'A,交y轴于点P,则PA+PB最小.【题目点拨】本题考查了根据轴对称变换、三角形的面积以及轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.20、(1)周长为,面积为;(2)【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=DE=AB,即可求出周长,作底边CD上的高EH,利用勾股定理求出高,即可求面积;(2)设∠ECB=∠EBC=,则,利用∠DEA=2∠DBE可推出∠CED=30°,作CE边上的高DM,利用30°所对的直角边是斜边的一半可求出高,再根据三角形面积公式求解.【题目详解】(1)∵,,为中点∴CE=DE=AB=3∴△CDE的周长=CE+DE+CD=3+3+2=8如图,作EH⊥CD∵CE=DE∴CH=CD=1∴S△CDE=(2)∵CE=DE=AB,E为AB中点∴CE=BE,DE=BE,∴∠ECB=∠EBC,∠EBD=∠EDB设∠ECB=∠EBC=,则∠CEA=2∠EBC=,∴∠DEA=2∠EBD=∴∠CED=∠DEA-∠CEA=如图,过D点作DM⊥CE于点M,由(1)可知在Rt△DEM中,DE=3,∴DM=DE=∴【题目点拨】本题考查了直角三角形斜边上的中线性质,等腰三角形的性质,以及勾股定理,熟练掌握直角三角形斜边上的中线等于斜边的一半与等腰三角形三线合一的性质,是解题的关键.21、(1)(,2);(2)y=x﹣;(3)E的坐标为(,)或(6,8)【分析】(1)把点E的纵坐标代入直线解析式,求出横坐标,得到点E的坐标,根据融合点的定义求求解即可;
(2)设点E的坐标为(a,a+2),根据融合点的定义用a表示出x、y,整理得到答案;
(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【题目详解】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8)【题目点拨】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.22、(1)∠COB=130°;(2)16.【分析】(1)利用角平分线的定义及三角形内角和即可得出答案;(2)过O作OD⊥BC于D点,连接AO,通过O为角平分线的交点,得出点O到三边的距离相等,利用特殊角的三角函数值求出距离,然后利用和周长即可得出答案.【题目详解】(1)解:∵BO、CO分别平分∠ABC和∠ACB∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,20°(2)过O作OD⊥BC于D点,连接AO∵O为角平分线的交点∴点O到三边的距离相等又∵∠ABC=60°,OB=4∴∠OBD=30°,OD=2即点O到三边的距离都等于2∴又∵△ABC的周长为16∴【题目点拨】本题主要考查角平分线的性质,掌握角平分线的性质是解题的关键.23、(1)a2+b2+c2+2ab+2bc+2ac;(2)20【解题分析】试题分析:(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,另一种是大正方形的面积,可得等式;(2)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.试题解析:(1);(2)考点:因式分解的应用24、(1)2;(2)4或16或2;(3)2或1.【分析】(1)根据题意得BP=2t,从而求出PC的长,然后利用勾股定理即可求出AP的长;(2)先利用勾股定理求出AB的长,然后根据等腰三角形腰的情况分类讨论,分别列出方程即可求出t的值;(3)根据点P的位置分类讨论,分别画出对应的图形,根据勾股定理求出AE,分别利用角平分线的性质和判定求出AP,利用勾股定理列出方程,即可求出t的值.【题目详解】(1)根据题意,得BP=2t,∴PC=16-2t=16-2×3=10,∵AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得:t=4;若AB=AP,∴此时AC垂直平分BP则BP=32,2t=32,解得:t=16;若PA=PB=2t,CP=16-2t∵PA2=CP2+AC2则(2t)2=(16-2t)2+82,解得:t=2.答:当△ABP为等腰三角形时,t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 夜市油污管理方案模板(3篇)
- 2025年保密教育线上培训考试模拟题库及答案解析
- 2025年国家安监局低压电工知识必考判断题题库及答案(528题)
- 吉林周边管理办法
- 名誉院长管理办法
- 启动送电管理办法
- 员工外聘管理办法
- 售楼人员管理办法
- 商会活动管理办法
- 商品规类管理办法
- 患者医疗信息管理制度
- 罪犯个别教育转化案例、罪犯X某的矫治个案、教育改造案例2023(共5篇)
- 石漠化综合治理人工造林设计方案
- 2024年物联网安装调试员职业技能竞赛考试题库500题(含答案)
- 《建筑施工技术》课件-砌筑工程施工
- 图文制作服务 投标方案(技术方案)
- 高中英语外研版 单词表 必修3
- 第十四届陕西省气象行业职业技能(县级综合气象业务)竞赛理论试题库-下(多选、判断题)
- 2023年新疆克州高校毕业生“三支一扶”计划招募考试真题
- 大气热力环流 教学设计 湘教版(2019)高中地理必修一
- JT∕T 795-2023 事故汽车修复技术规范
评论
0/150
提交评论