2024届浙江省绍兴越城区五校联考八上数学期末复习检测模拟试题含解析_第1页
2024届浙江省绍兴越城区五校联考八上数学期末复习检测模拟试题含解析_第2页
2024届浙江省绍兴越城区五校联考八上数学期末复习检测模拟试题含解析_第3页
2024届浙江省绍兴越城区五校联考八上数学期末复习检测模拟试题含解析_第4页
2024届浙江省绍兴越城区五校联考八上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省绍兴越城区五校联考八上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.点P的坐标为(﹣1,2),则点P位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在平行四边形ABCD中,对角线AC,BD交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A.1<m<11 B.2<m<22 C.10<m<12 D.5<m<63.如图,B、E,C,F在同一条直线上,若AB=DE,∠B=∠DEF,添加下列一个条件后,能用“SAS”证明△ABC≌△DEF,则这条件是()A.∠A=∠D B.∠ABC=∠F C.BE=CF D.AC=DF4.下列各数中是无理数的是()A. B. C. D.5.如图,平面直角坐标系xOy中,点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°.在x轴上取一点P(m,0),过点P作直线l垂直于直线OA,将OB关于直线l的对称图形记为O′B′,当O′B′和过A点且平行于x轴的直线有交点时,m的取值范围为()A.m≥4 B.m≤6 C.4<m<6 D.4≤m≤66.以下列各组线段的长为边,能组成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、37.2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为()A.0.456×10﹣5 B.4.56×10﹣6 C.4.56×10﹣7 D.45.6×10﹣78.在下列数字宝塔中,从上往下数,2018在_____层等式的______边.1+2=34+5+6=7+89+10+11+12=13+14+1516+17+18+19+20=21+22+23+24......正确的答案是()A.44,左 B.44,右 C.45,左 D.45,右9.式子有意义的条件是()A.x≠2 B.x>﹣2 C.x≥2 D.x>210.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么的值为().A.49 B.25 C.13 D.111.如图,一次函数,的图象与的图象相交于点,则方程组的解是()A. B. C. D.12.下列等式成立的是()A. B.(a2)3=a6 C.a2.a3=a6 D.二、填空题(每题4分,共24分)13.一个边形,从一个顶点出发的对角线有______条,这些对角线将边形分成了______个三角形,这个边形的内角和为__________.14.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛15.甲、乙二人两次同时在一家粮店购买大米,两次的价格分别为每千克元和元().甲每次买100千克大米,乙每次买100元大米.若甲两次购买大米的平均单价为每千克元,乙两次购买大米的平均单价为每千克元,则:______,______.(用含、的代数式表示)16.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.17.我们知道,三角形的稳定性在日常生活中被广泛运用.要使不同的木架不变形,四边形木架至少要再钉1根木条;五边形木架至少要再钉2根木条;…按这个规律,要使边形木架不变形至少要再钉______________根木条.(用表示,为大于3的整数)18.若(x-1)x+1=1,则x=______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),直线交l₂交y轴于点B(0,﹣5).(1)求直线l₂的解析式;(2)将△OAB沿直线l₂翻折得到△CAB(其中点O的对应点为点C),求证:AC∥OB;(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.20.(8分)在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.21.(8分)如图,点在上,,.求证:.22.(10分)如图,中,,,,若动点从点开始,按的路径运动,且速度为每秒,设出发的时间为秒.(1)出发2秒后,求的周长.(2)问为何值时,为等腰三角形?(3)另有一点,从点开始,按的路径运动,且速度为每秒,若、两点同时出发,当、中有一点到达终点时,另一点也停止运动.当为何值时,直线把的周长分成的两部分?23.(10分)如图,四边形中,,,,是四边形内一点,是四边形外一点,且,,(1)求证:;(2)求证:.24.(10分)计算或因式分解:(1)计算:;(2)因式分解:;(3)计算:.25.(12分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20151212B库2520108(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?26.如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE求证:AH=2BD

参考答案一、选择题(每题4分,共48分)1、B【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【题目详解】P的坐标为(﹣1,2),则点P位于第二象限,故选B.2、A【分析】根据三角形三边关系判断即可.【题目详解】∵ABCD是平行四边形,AC=12,BD=10,O为AC和BD的交点,∴AO=6,BO=5,∴6-5<m<6+5,即1<m<11故选:A.【题目点拨】本题考查平行四边形的性质和三角形的三边关系,关键在于熟记三角关系.3、C【分析】根据“SAS”证明两个三角形全等,已知AB=DE,∠B=∠DEF,只需要BC=EF,即BE=CF,即可求解.【题目详解】用“SAS”证明△ABC≌△DEF∵AB=DE,∠B=∠DEF∴BC=EF∴BE=CF故选:C【题目点拨】本题考查了用“SAS”证明三角形全等.4、C【分析】分别根据无理数、有理数的定义即可判定选择项.【题目详解】A.3.14是有限小数,属于有理数;B.=2,是整数,属于有理数;C.是无理数;D.=4,是整数,属于有理数;故选C.【题目点拨】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.5、D【分析】根据题意可以作出合适的辅助线,然后根据题意,利用分类讨论的方法可以计算出m的两个极值,从而可以得到m的取值范围.【题目详解】解:如图所示,当直线l垂直平分OA时,O′B′和过A点且平行于x轴的直线有交点,∵点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°,∴∠BAO=30°,OB=2,∴OA=4,∵直线l垂直平分OA,点P(m,0)是直线l与x轴的交点,∴OP=4,∴当m=4;作BB″∥OA,交过点A且平行于x轴的直线与B″,当直线l垂直平分BB″和过A点且平行于x轴的直线有交点,∵四边形OBB″O′是平行四边形,∴此时点P与x轴交点坐标为(6,0),由图可知,当OB关于直线l的对称图形为O′B′到O″B″的过程中,点P符合题目中的要求,∴m的取值范围是4≤m≤6,故选:D.【题目点拨】本题考查坐标与图形的变化−对称,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.6、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【题目详解】解:根据三角形任意两边的和大于第三边,可知

A、2+4<7,不能够组成三角形,故A错误;

B、2+3=5,不能组成三角形,故B错误;

C、7+3>7,能组成三角形,故C正确;

D、3+5<9,不能组成三角形,故D错误;

故选:C.【题目点拨】本题考查了能够组成三角形三边的条件,熟练掌握构成三角形的条件是解题的关键.7、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.00000456=4.56×10﹣6;故选:B.【题目点拨】本题考查了科学计数法,灵活利用科学计数法表示绝对值小于1的数是解题的关键.8、B【题目详解】试题解析:∵第1层的第1个数为第2层的第1个数为第3层的第1个数为∴第44层的第1个数为第45层的第1个数为∴2018在第44层,这一层共有个数,左边个数,右边个数.∴2018在第44层的右边.故选B.9、D【解题分析】根据二次根式和分式有意义的条件可得x﹣2>0,再解即可.【题目详解】解:由题意得:x﹣2>0,解得:x>2,故选:D.【题目点拨】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.10、A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【题目详解】根据题意,结合勾股定理a2+b2=25,四个三角形的面积=4×ab=25-1=24,∴2ab=24,联立解得:(a+b)2=25+24=1.故选A.11、A【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【题目详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组的解是,故选A.【题目点拨】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.12、B【分析】直接利用零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则分别化简得出答案.【题目详解】解:A、a0=1(a≠0),故此选项错误;

B、根据幂的乘方法则可得(a2)3=a6,正确;

C、根据同底数幂的乘法法则可得a2.a3=a5,故此选项错误;

D、根据积的乘方法则可得,故此选项错误;

故选:B.【题目点拨】此题主要考查了零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则等知识,正确掌握运算法则是解题关键.二、填空题(每题4分,共24分)13、【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,边形有个顶点,和它不相邻的顶点有个,因而从边形的一个顶点出发的对角线有条,把边形分成个三角形.由分成三角形个数即可求出多边形内角和.【题目详解】解:从边形的一个顶点出发的对角线有条,可以把边形划分为个三角形,这个边形的内角和为.故答案为:,,.【题目点拨】此题考查了多边形的对角线的知识,多边形的问题可以通过作对角线转化为三角形的问题解决,是转化思想在多边形中的应用.14、15【分析】单循环制:每个班都要和其他5个班赛一场,共赛6×5=30场,由于两个班只赛一场,去掉重复计算的情况,实际只赛:30÷2=15场,据此解答.【题目详解】解:根据题意,得(61)×6÷2,=30÷2,=15(场),答:如果釆用淘汰制,需安排5场比赛;如果釆用单循环制,一共安排15场比赛.【题目点拨】本题考查了握手问题的实际应用,要注意去掉重复计算的情况,如果选手比较少可以用枚举法解答,如果个选手比较多可以用公式:单循环制:比赛场数=n(n-1)÷2;淘汰制:比赛场数=n-1解答.15、【分析】根据单价数量=总价即可列出式子.【题目详解】解:∵两次大米的价格分别为每千克a元和b元(a≠b),甲每次买100千克大米,乙每次买100元大米,

∴甲两次购买大米共需付款100(a+b)元,乙两次共购买千克大米∵甲两次购买大米的平均单价为每千克Q1元,乙两次购买大米的平均单价为每千克Q2元,,故答案为:,【题目点拨】此题考查了分式混合运算的应用,弄清题意是解本题的关键.分式的混合运算最后结果的分子、分母要进行约分,注意运算的结果要化成最简分式或整式.16、2【分析】根据定义即可求出答案.【题目详解】由题意可知:原式=1-i2=1-(-1)=2故答案为2【题目点拨】本题考查新定义型运算,解题的关键是正确理解新定义.17、n-3【分析】根据三角形具有稳定性,需要的木条数等于过多边形的一个顶点的对角线的条数.【题目详解】过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,

所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.

故答案为:(n-3).【题目点拨】考查了三角形的稳定性以及多边形的对角线的问题,解题关键是将问题转换成把多边形分成三角形的问题.18、2或-1【解题分析】当x+1=0,即x=-1时,原式=(-2)

0

=1;当x-1=1,x=2时,原式=1

3

=1;当x-1=-1时,x=0,(-1)

1

=-1,舍去.故答案为2或-1.三、解答题(共78分)19、(2)直线l₂的解析式为y=2x﹣5;(2)证明见解析;(3)P2(0,﹣9),P2(7,﹣6),P3(,).【分析】(2)解方程得到A(2,3),待定系数法即可得到结论;

(2)根据勾股定理得到OA=5,根据等腰三角形的性质得到∠OAB=∠OBA,根据折叠的性质得到∠OAB=∠CAB,于是得到结论;

(3)如图,过C作CM⊥OB于M,求得CM=OD=2,得到C(2,-2),过P2作P2N⊥y轴于N,根据全等三角形的判定和性质定理即可得到结论.【题目详解】(2)∵直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),∴A(2,3).∵直线交l₂交y轴于点B(0,﹣5),∴y=kx﹣5,把A(2,3)代入得:3=2k﹣5,∴k=2,∴直线l₂的解析式为y=2x﹣5;(2)∵OA5,∴OA=OB,∴∠OAB=∠OBA.∵将△OAB沿直线l₂翻折得到△CAB,∴∠OAB=∠CAB,∴∠OBA=∠CAB,∴AC∥OB;(3)如图,过C作CM⊥OB于M,则CM=OD=2.∵BC=OB=5,∴BM=3,∴OB=2,∴C(2,﹣2),过P2作P2N⊥y轴于N.∵△BCP是等腰直角三角形,∴∠CBP2=90°,∴∠MCB=∠NBP2.∵BC=BP2,∴△BCM≌△P2BN(AAS),∴BN=CM=2,∴P2(0,﹣9);同理可得:P2(7,﹣6),P3(,).【题目点拨】本题考查了一次函数的综合题,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,正确的求得P点的坐标是解题的关键.20、(1)证明见解析;(2)证明见解析.【解题分析】(1)连接BD,根据角平分线的性质可得∠BAD=60°,又因为AD=AB,即可证△ABD是等边三角形;(2)由△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA证明△BDE≌△ADF,得出BE=AF.【题目详解】(1)证明:连接BD,∵∠BAC=120°,AD平分∠BAC∴∠BAD=∠DAC=×120°=60°,∵AD=AB,∴△ABD是等边三角形;(2)证明:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BD=AD,∵∠DAC=∠BAC=60°,∴∠DBE=∠DAF,∵∠EDF=60°,∴∠BDE=∠ADF,在△BDE与△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF.【题目点拨】本题主要考查等边三角形的判定和性质、全等三角形的判定和性质,熟练掌握相关知识点,掌握数形结合的思想是解题的关键.21、见解析【分析】由BF=DC得出BC=DF,由得出∠B=∠D,结合∠A=∠E即可证出.【题目详解】解:证明:∵BF=DC,即BC+CF=DF+FC,∴BC=DF,∵AB∥DE,∴∠B=∠D,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS).【题目点拨】本题考查了全等三角形的判定,平行线的性质等知识点,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,两直线平行,内错角相等.22、(1)cm;(2)当为3秒、5.4秒、6秒、6.5秒时,为等腰三角形;(3)或或秒【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长;(2)分点P在边AC上和点P在边AB上两种情况求解即可;(3)分类讨论:①当点在上,在上;②当点在上,在上;③当点在上,在上.【题目详解】解:(1)如图1,由,,,∴,动点从点开始,按的路径运动,且速度为每秒,∴出发2秒后,则,∴AP=2,∵,∴,∴的周长为:.(2)①如图2,若在边上时,,此时用的时间为,为等腰三角形;②2若在边上时,有三种情况:(ⅰ)如图3,若使,此时,运动的路程为,所以用的时间为,为等腰三角形;(ⅱ)如图4,若,作于点,∵,∴CD=,在中,,所以,所以运动的路程为,则用的时间为,为等腰三角形;(ⅲ)如图5,若,此时应该为斜边的中点,运动的路程为,则所用的时间为,为等腰三角形;综上所述,当为、、、时,为等腰三角形;(3)①3÷2=1.5秒,如图6,当点在上,在上,则,,∵直线把的周长分成的两部分,∴,∴,符合题意;②(3+5)÷2=4秒,如图7,当点在上,在上,则,,∵直线把的周长分成的两部分,∴,,符合题意;③12÷2=6秒,当点在上,在上,则,,∵直线把的周长分成的两部分,(ⅰ)当AP+AQ=周长的时,如图8,∴,,符合题意;(ⅱ)当AP+AQ=周长的时,如图9,∴,∴;∵当秒时,点到达点停止运动,∴这种情况应该舍去.综上,当为或或秒时,直线把的周长分成的两部分.【题目点拨】此题考查了等腰三角形的判定与性质,等积法求线段的长,勾股定理,以及分类讨论的数学思想,对(2)、(3)小题分类讨论是解答本题的关键.23、(1)证明见解析;(2)证明见解析【分析】(1)证明即可得到结论;(2)证明即可.【题目详解】(1)延长、交于点.,,.(2),;,,,同理可得:.又,,.【题目点拨】此题主要考查了平行线的判定以及全等三角形的判定与性质,灵活作出辅助线是解题的关键.24、(1)3;(2);(3)【分析】(1)根据立方根的定义、算术平方根的定义和绝对值的定义计算即可;(2)先根据多项式乘多项式法则去括号,然后利用完全平方公式因式分解即可;(3)根据幂的运算性质、单项式乘单项式法则、单项式除以单项式法则、多项式除以单项式法则计算即可.【题目详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论