




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省齐齐哈尔市克东县八年级数学第一学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3 B.10 C.12 D.152.在平面直角坐标系中,若点P(m+3,-2m)到两坐标轴的距离相等,则m的值为()A.-1 B.3 C.-1或3 D.-1或53.将变形正确的是()A. B.C. D.4.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A. B.C. D.5.当x时,分式的值为0()A.x≠- B.x=- C.x≠2 D.x=26.如图,阴影部分是一个正方形,此正方形的面积是()A.16 B.8 C.4 D.27.下列一次函数中,y随x的增大而增大的是()A.y=-x B.y=1-2x C.y=-x-3 D.y=2x-18.如图,过边长为2的等边三角形ABC的顶点C作直线l⊥BC,然后作△ABC关于直线l对称的△A′B′C,P为线段A′C上一动点,连接AP,PB,则AP+PB的最小值是()A.4 B.3 C.2 D.2+9.如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为()A.2 B.3 C.4 D.510.已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C′全等的是()A.AB=A′B′,AC=A′C′,BC=B′C′ B.∠A=∠A′,∠B=∠B′,AC=A′C′C.AB=A′B′,AC=A′C′,∠A=∠A′ D.AB=A′B′,BC=B′C′,∠C=∠C′二、填空题(每小题3分,共24分)11.现在生活人们已经离不开密码,如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式,因式分解的结果是,若取,时则各个因式的值是:,,,把这些值从小到大排列得到,于是就可以把“018162”作为一个六位数的密码.对于多项式,取,时,请你写出用上述方法产生的密码_________.12.若边形的每个外角均为,则的值是________.13.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).14.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.15.下列关于x的方程①,②,③1,④中,是分式方程的是(________)(填序号)16.如图,四边形ABCD,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD的面积为___________.17.如图,的三条角平分线交于点O,O到AB的距离为3,且的周长为18,则的面积为______.18.“x的与x的和不超过5”用不等式表示为____.三、解答题(共66分)19.(10分)解不等式组:;并将解集在数轴上表示出来.20.(6分)(1)计算;(2)已知4(x+1)2=9,求出x的值.21.(6分)如图,在长方形中,分别是线段上的点,且四边形是长方形.(1)若点在线段上,且,求线段的长.(2)若是等腰三角形,求的长.22.(8分)如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置.23.(8分)如图,已知△ABC,利用尺规,根据下列要求作图(保留作图痕迹,不写作法),并根据要求填空:(1)作∠ABC的平分线BD交AC于点D;(2)作BD的垂直平分线交AB于E,交BC于F;(3)在(1)、(2)条件下,连接DE,线段DE与线段BF的关系为.24.(8分)某服务厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(I)买一套西装送一条领带;(II)西装和领带均按定价的90%付款.某超市经理现要到该服务厂购买西装20套,领带若干条(不少于20条).(1)设购买领带为x(条),采用方案I购买时付款数为y1(元),采用方案II购买时付款数为(元).分别写出采用两种方案购买时付款数与领带条数x之间的函数关系式;(2)就领带条数x讨论在上述方案中采用哪种方案购买合算.25.(10分)如图,点C在线段AF上,AB∥FD,AC=FD,AB=FC,CE平分∠BCD交BD于E.求证:(1)△ABC≌△FCD;(2)CE⊥BD.26.(10分)请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】作DH⊥AC于H,如图,先根据勾股定理计算出AC=10,再利用角平分线的性质得到DB=DH,进行利用面积法得到×AB×CD=DH×AC,则可求出DH,然后根据三角形面积公式计算S△ADC.【题目详解】解:作DH⊥AC于H,如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,∴,∵AD为∠BAC的角平分线,∴DB=DH,∵×AB×CD=DH×AC,∴6(8﹣DH)=10DH,解得DH=3,∴S△ADC=×10×3=1.故选:D.【题目点拨】本题结合三角形的面积考查角平分线的性质定理,熟练掌握该性质,作出合理辅助线是解答关键.2、C【分析】根据到坐标轴的距离相等,分横坐标与纵坐标相等和互为相反数两种情况讨论解答.【题目详解】解:∵点P(m+3,-2m)到两坐标轴的距离相等∴m+3+(-2m)=0或m+3=-2m解得m=3或m=-1故选:C【题目点拨】本题考查了点的坐标,难点在于要分两种情况讨论,熟记各象限内点的坐标特征是解题的关键.3、C【分析】根据进行变形即可.【题目详解】解:即故选:C.【题目点拨】此题考查了完全平方公式,掌握是解题的关键,是一道基础题,比较简单.4、D【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【题目详解】设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选D.【题目点拨】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.5、D【分析】分式的值为的条件是:(1)分子等于零;(2)分母不等于零.两个条件需同时具备,缺一不可.据此可以解答本题.【题目详解】解:∵分式的值为∴∴.故选:D【题目点拨】本题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为这个条件.6、B【分析】先证明图中的三角形为等腰直角三角形,再利用勾股定理求出正方形边长的平方即可得出结果.【题目详解】解:如图,
∵阴影部分是正方形,所以∠ABC=90°,∴∠C=∠BAC=45°,∴AB=BC,又AC=4,∴AB2+BC2=AC2=16
∴AB2=AC2=1,
∴正方形的面积=AB2=1.
故选:B.【题目点拨】本题考查勾股定理,等腰三角形的判定,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、D【分析】根据一次函数的性质对各选项进行逐一分析即可.【题目详解】解:∵y=kx+b中,k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,A、k=-1<0,y的值随着x值的增大而减小;B、k=-2<0,y的值随着x值的增大而减小;C、k=-1<0,y的值随着x值的增大而减小;D、k=2>0,y的值随着x值的增大而增大;故选D.【题目点拨】本题考查了一次函数的性质,属于基础题,关键是掌握在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8、A【分析】连接AA′,根据现有条件可推出△A′B′C≌△AA′C,连接AB′交A′C于点E,易证△A′B′E≌△A′AE,可得点A关于A′C对称的点是B′,可得当点P与点C重合时,AP+PB取最小值,即可求得答案.【题目详解】解:如图,连接AA′,由对称知△ABC,△A′B′C都是等边三角形,∴∠ACB=∠A′CB′=60°,∴∠A′CA=60°,由题意得△ABC≌△A′B′C,∴AC=A′C,∴△ACA′是等边三角形,∴△A′B′C≌△AA′C,连接AB′交A′C于点E,易证△A′B′E≌△A′AE,∴∠A′EB′=∠A′EA=90°,B′E=AE,∴点A关于A′C对称的点是B′,∴当点P与点C重合时,AP+PB取最小值,此时AP+PB=AC+BC=2+2=4,故选:A.【题目点拨】本题考查了轴对称——最短路线问题,等边三角形的判定和性质,全等三角形的判定和性质,掌握知识点是解题关键.9、B【分析】分析已知和所求,先由CE∥BF,根据平行线性质得出内错角∠ECO=∠FBO,再由对顶角∠EOC=∠FOB和OE=OF,根据三角形的判定即可判定两个三角形全等;由上分析所得三角形全等,根据全等三角形的性质可得对应边相等,再根据三角形的判定定理即可判定另两对三角形是否全等.【题目详解】解:①∵CE∥BF,∴∠OEC=∠OFB,又∵OE=OF,∠COE=∠BOF,∴△OCE≌△OBF,∴OC=OB,CE=BF;②∵AB∥CD,∴∠ABO=∠DCO,∠AOB=∠COD,又∵OB=OC,∴△AOB≌△DOC;③∵AB∥CD,CE∥BF,∴∠D=∠A,∠CED=∠COD,又∵CE=BF,∴△CDE≌△BAF.故选B.【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10、D【解题分析】根据全等三角形的判定方法对各项逐一判断即得答案.【题目详解】解:A、AB=A′B′,AC=A′C′,BC=B′C′,根据SSS可判定△ABC和△A′B′C′全等,本选项不符合题意;B、∠A=∠A′,∠B=∠B′,AC=A′C′,根据AAS可判定△ABC和△A′B′C′全等,本选项不符合题意;C、AB=A′B′,AC=A′C′,∠A=∠A′,根据SAS可判定△ABC和△A′B′C′全等,本选项不符合题意;D、AB=A′B′,BC=B′C′,∠C=∠C′,这是SSA,不能判定△ABC和△A′B′C′全等,本选项符合题意.故选:D.【题目点拨】本题考查了全等三角形的判定,属于应知应会题型,熟练掌握全等三角形的判定方法是解题关键.二、填空题(每小题3分,共24分)11、1【分析】把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.【题目详解】4x3−xy2=x(4x2−y2)=x(2x+y)(2x−y),当x=10,y=10时,x=10;2x+y=30;2x−y=10,把它们从小到大排列得到1.用上述方法产生的密码是:1.故答案为:1.【题目点拨】本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.12、【解题分析】用360°除以每一个外角的度数求出边数即可【题目详解】360°÷120°=3故答案为3【题目点拨】此题考查多边形的内角与外角,难度不大13、xn+1-1【解题分析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.14、1【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=1°.【题目详解】∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=1°.故答案为1.【题目点拨】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.15、②【解题分析】分式方程分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程,等号两边至少有一个分母含有未知数。【题目详解】根据分式方程的定义即可判断.符合分式方程的定义的是②.【题目点拨】本题考查的是分式方程的定义,解题的关键是掌握分式方程的定义.16、36【分析】连接BD,先根据勾股定理求出BD的长,再根据勾股定理的逆定理判断出△BCD的形状,根据=即可得出结论.【题目详解】连接BD.∵∠A=90°,AB=3,DA=4,∴BD==5在△BCD中,∵BD=5,CD=12,BC=13,,即,∴△BCD是直角三角形,∴==,故答案为:36.【题目点拨】此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.17、27【分析】作OD⊥AB,OE⊥AC,OF⊥BC,垂足分别为D、E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.【题目详解】如图,作OD⊥AB,OE⊥AC,OF⊥BC,垂足分别为D、E、F,∵OB,OC分别平分∠ABC和∠ACB,∴OD=OE=OF=3,∴S△ABC=S△OBC+S△OAC+S△OAB=AB•OD+AC•OE+BC•OF=OD(AB+BC+AC)=×3×18=27,故答案为27.【题目点拨】本题考查了角平分线的性质,三角形的面积;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.18、x+x≤1.【分析】理解题意列出不等式即可.【题目详解】“x的与x的和不超过1”用不等式表示为x+x≤1,故答案为:x+x≤1.【题目点拨】此题主要考查了不等式的表示,解题的关键是正确理解题意.三、解答题(共66分)19、.数轴表示见解析【分析】先分别求出各不等式的解集,然后再确定其公共部分即为不等式组的解集,最后在数轴上表示出来即可.【题目详解】解:,由不等式①解得,,由不等式②解得,,所以,原不等式组的解集是.在数轴上表示如下:【题目点拨】本题考查了不等式组的解法,掌握解不等式和确定不等式组解集的方法是解答本题的关键.20、(1);(2)或.【分析】(1)先计算算术平方根、立方根、绝对值运算、零指数幂,再计算实数的加减法即可得;(2)利用平方根的性质解方程即可得.【题目详解】(1)原式,,;(2),,,或,即x的值为或.【题目点拨】本题考查了算术平方根、立方根、零指数幂、利用平方根的性质解方程等知识点,熟记各运算法则是解题关键.21、(1);(2)或5或【分析】(1)根据四边形ABCD是长方形,可得DC=AB=6,根据长方形的性质和勾股定理可得AC的长,作于点,根据三角形的面积可求出DQ的长;(2)由(1)得AC的长,分三种情况进行讨论:①当时;②当时;③当时,计算即可得出AP的长.【题目详解】(1)长方形中,,如图,作于点,(2)要使是等腰三角形①当时,②当时,③当时,如(1)中图,于点,由(1)知,,综上,若是等腰三角形,或5或.【题目点拨】本题考查了矩形的性质,勾股定理,等腰三角形的性质.解题的关键要注意分情况讨论.22、作图见解析.【解题分析】试题分析:因为AD垂直平分BC,所以点C是点B关于AD的对称点,连接CN交AD于点M.试题解析:如图,连接NC与AD的交点为M点.点M即为所求.23、(1)详见解析;(2)详见解析;(3)平行且相等.【解题分析】(1)先BD平分∠ABC交AC于D;
(2)作EF垂直平分BD,交AB于点E,交BC于点F;
(3)由于EF垂直平分BD,则EB=ED,而BD平分∠EBF,则可判断△BEF为等腰三,角形,所以BE=BF,所以有DE=BF.设EF与BD交点为M,因为EF垂直平方BD,所以BM=DM,∠BMF和∠EMD=90°,DE=BF所以三角形MED≌△BFM,∠DBF=∠EDB,所以DE和BF平行且相等.【题目详解】解:(1)如图,BD为所作;
(2)如图,EF为所作;
(3)DE和BF平行且相等.【题目点拨】本题考查了作图-复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24、(1)yI=40x+3200(x≥20);yII=36x+3600(x≥20);(2)买1条领带时,可采用两种方案之一;购买领带超过1条时,采用方案II购买合算;购买领带20条以上不超过1条时,采用方案I购买合算【分析】(1)根据两种方案的购买方法即可列式计算得到答案;(2)先计算yI=yII时的x值,再分析超过1条时和20条以上不超过1条时的购买方案.【题目详解】解:(1)yI=200×20+(x﹣20)×40=40x+3200(x≥20)yII=200×20×90%+x×40×90%=36x+3600(x≥20).(2)当yI=yII时,40x+3200=36x+3600,解得x=1.即:买1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美容师素质培训
- 2.2.1细胞通过分裂产生新细胞课件2023-2024学年人教版生物七年级上册
- 工勤人员劳动合同协议
- 矿泉水经营承包合同协议
- 餐车出租合同协议
- 废旧工厂拆除合同协议
- 团长和商家合作合同协议
- 私人拉货运输合同协议
- 工地用塔吊出租合同协议
- 环评搬迁安置协议书模板
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- GB/T 18618-2002产品几何量技术规范(GPS)表面结构轮廓法图形参数
- GB/T 10183.1-2018起重机车轮及大车和小车轨道公差第1部分:总则
- 波形梁钢护栏检测记录表
- 大田作物生产技术标
- 数学命题教学设计课件
- 叶芝《当你老了》赏析课件上课讲义
- 护士角色的转换与适应
- 危险化学品生产经营企业安全知识培训
- 混凝土构件之梁配筋计算表格(自动版)
- 自制饮品操作流程
评论
0/150
提交评论