版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰兴市西城中学2024届八上数学期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.4的平方根是()A.4 B. C. D.22.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2) B.(3,0) C.(﹣1,3) D.(0,﹣4)3.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.、、4.下列命题:①同旁内角互补,两直线平行;②若,则;③对角线互相垂直平分的四边形是正方形;④对顶角相等.其中逆命题是真命题的有()A.1个 B.2个 C.3个 D.4个5.对于实数,,我们用符号表示,两数中较小的数,若,则的值为().A.1,,2 B.,2 C. D.26.如图所示,在第1个中,;在边上任取一点,延长到,使,得到第2个;在边上任取一点,延长到,使,得到第3个…按此做法继续下去,则第个三角形中以为顶点的底角度数是()A. B. C. D.7.如图,以两条直线l1,l2的交点坐标为解的方程组是()A. B. C. D.8.如图,,再添加下列条件仍不能判定的是()A. B. C. D.9.如图,若圆盘的半径为2,中间有一边长为1的正方形,向圆盘内随机投掷一枚飞镖,则飞镖落在中间正方形内的概率是()A. B. C. D.10.若是完全平方式,则的值是()A. B. C.+16 D.-16二、填空题(每小题3分,共24分)11.如图,在中,,,是的中线,是的角平分线,交的延长线于点,则的长为_______.12.在平面直角坐标系中,矩形如图放置,动点从出发,沿所示方向运动,每当碰到矩形的边时反弹,每次反弹的路径与原路径成度角(反弹后仍在矩形内作直线运动),当点第次碰到矩形的边时,点的坐标为;当点第次碰到矩形的边时,点的坐标为__________.13.如图,直线,以直线上的点为圆心,适当长为半径画弧,分别交直线,于点、,连接、,若,则______.14.计算:|-2|=______.15.已知变量与满足一次函数关系,且随的增大而减小,若其图象与轴的交点坐标为,请写出一个满足上述要求的函数关系式___________.16.如图,已知平分,,,,,则的长为______.17.实数P在数轴上的位置如图所示,化简+=________.18.若x+2(m-3)x+16是一个完全平方式,那么m应为_______.三、解答题(共66分)19.(10分)[建立模型](1)如图1.等腰中,,,直线经过点,过点作于点,过点作于点,求证:;[模型应用](2)如图2.已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转45'°至直线,求直线的函数表达式:(3)如图3,平面直角坐标系内有一点,过点作轴于点,BC⊥y轴于点,点是线段上的动点,点是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点的坐标,若不能,请说明理由.20.(6分)求下列各式的值:(1)已知,求代数式的值;(2)已知a=,求代数式[(ab+1)(ab-2)-2a2b2+2](-ab)的值.21.(6分)某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.23.(8分)在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积24.(8分)(1)解方程组(2)解不等式组25.(10分)已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=28°,求∠DAE的度数.26.(10分)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,在中,,求的长.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据平方根的性质,正数有两个平方根且互为相反数,开方求解即可.【题目详解】∵一个正数有两个平方根且互为相反数∴4的平方根是故选:C.【题目点拨】本题主要考查平方根的性质,熟知一个正数有两个平方根并互为相反数是解题的关键,区分平方根与算术平方根是易错点.2、B【分析】根据x轴上点的特点解答即可.【题目详解】在平面直角坐标系中x轴上点的特点是:所有点的纵坐标都为0,故选B.【题目点拨】本题是一道基础题,考查平面直角坐标系的特点,解题的关键是掌握平面直角坐标系的基本特征即可.3、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【题目详解】A.32+42=52,能构成直角三角形,故不符合题意;B.12+12=()2,能构成直角三角形,故不符合题意;C.82+122≠132,不能构成直角三角形,故符合题意;D.()2+()2=()2,能构成直角三角形,故不符合题意,故选C.【题目点拨】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、B【分析】首先写出各个命题的逆命题,然后进行判断即可.【题目详解】解:①同旁内角互补,两直线平行,其逆命题:两直线平行,同旁内角互补是真命题;
②若,则,其逆命题:若,则是假命题;③对角线互相垂直平分的四边形是正方形,其逆命题:正方形的对角线互相垂直平分是真命题;
④对顶角相等,其逆命题:相等的角是对顶角是假命题;
故选:B.【题目点拨】本题考查了命题与定理,判断一件事情的语句,叫做命题,也考查了逆命题.5、D【分析】结合题意,根据分式、绝对值的性质,分、两种情况计算,即可得到答案.【题目详解】若,则∴∴∴,符合题意;若,则当时,无意义当时,∴,故不合题意∴故选:D.【题目点拨】本题考查了分式、绝对值的知识;解题的关键是熟练掌握分式、绝对值的性质,从而完成求解.6、C【解题分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2的度数,找出规律即可得出第n个三角形中以An为顶点的底角度数.【题目详解】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°…∴第n个三角形中以An为顶点的底角度数是()n−1×75°.故选C.【题目点拨】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2的度数,找出规律是解答此题的关键.7、C【解题分析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【题目详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.【题目点拨】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.8、A【分析】根据AB∥CD,可得∠BAC=∠ACD,再加上公共边AC=AC,然后结合全等三角形的判定定理进行分析即可.【题目详解】:∵AB∥CD,∴∠BAC=∠ACD,A、添加BC=AD不能判定△ABC≌△CDA,故此选项符合题意;B、添加AB=CD可利用SAS判定△ABC≌△CDA,故此选项不合题意;C、添加AD∥BC可得∠DAC=∠BCD,可利用ASA判定△ABC≌△CDA,故此选项不合题意;D、添加∠B=∠D可利用AAS判定△ABC≌△CDA,故此选项不合题意;故答案为:A.【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.9、D【分析】根据几何概率的公式,分别求解出圆形的面积和正方形的面积即可.【题目详解】由题:,∴,故选:D.【题目点拨】本题考查几何概率的计算,准确计算各部分面积是解题关键.10、B【分析】根据完全平方公式:,即可得出结论.【题目详解】解:∵是完全平方式,∴解得:故选B.【题目点拨】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.二、填空题(每小题3分,共24分)11、6【分析】根据等腰三角形的性质可得AD⊥BC,∠BAD=∠CAD=60°,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,从而AD=DF,求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【题目详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF//AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=AB=×12=6,∴DF=6,故选:C.【题目点拨】本题考查的是直角三角形的性质,等腰三角形的性质,平行线的性质,掌握直角三角形30°角所对的直角边等于斜边的一半的性质是解题的关键.12、(8,3)【分析】根据反弹的方式作出图形,可知每6次碰到矩形的边为一个循环组依次循环,用2019除以6,根据商和余数的情况确定所对应的点的坐标即可.【题目详解】解:如图,当点P第2次碰到矩形的边时,点P的坐标为:(7,4);
当点P第6次碰到矩形的边时,点P的坐标为(0,3),
经过6次碰到矩形的边后动点回到出发点,
∵2019÷6=336…3,
∴当点P第2019次碰到矩形的边时为第337个循环组的第3次碰到矩形的边,
∴点P的坐标为(8,3).
故答案为:(8,3).【题目点拨】此题主要考查了点的坐标的规律,作出图形,观察出每6次碰到矩形的边为一个循环组依次循环是解题的关键.13、【分析】由直线,可得到∠BAC=∠1=30°,然后根据等腰三角形以及三角形内角和定理,可求出∠ABC的度数,再通过直线,得到∠2的度数.【题目详解】解:∵直线m∥n,
∴∠BAC=∠1=30°,
由题意可知AB=AC,∴∠ABC=∠BAC,
∴∠ABC=(180°-∠BAC)=(180°-30°)=75°,∵直线m∥n,
∴∠2=∠ABC=75°,
故答案为75°.【题目点拨】本题主要考查了平行线的性质以及三角形的内角和定理,熟练掌握两直线平行,内错角相等是解题的关键.14、0【分析】先化简绝对值,以及求立方根,然后相减即可.【题目详解】解:;故答案为0.【题目点拨】本题考查了立方根和绝对值的定义,解题的关键是正确进行化简.15、答案不唯一,如y=-x+2;【分析】首先根据函数增减性判定的正负,然后根据与轴的交点坐标即可得出解析式.【题目详解】由题意,得∵与轴的交点坐标为∴满足条件的函数解析式为y=-x+2,答案不唯一;故答案为:答案不唯一,如y=-x+2.【题目点拨】此题主要考查利用一次函数性质判定解析式,熟练掌握,即可解题.16、【分析】根据角平分线的性质得出,然后根据即可求出CD的长,则DE的长可求.【题目详解】∵,∴∵平分,,∴故答案为:3cm.【题目点拨】本题主要考查角平分线的性质,掌握角平分线的性质是解题的关键.17、1【解题分析】根据图得:1<p<2,+=p-1+2-p=1.18、-1或7【题目详解】∵x+2(m-3)x+16是一个完全平方式,∴,∴m=-1或7.故答案是:-1或7三、解答题(共66分)19、(1)见解析;(2)直线l2的函数表达式为:y=−5x−10;(3)点D的坐标为(,)或(4,−7)或(,).【解题分析】(1)由垂直的定义得∠ADC=∠CEB=90°,由同角的余角的相等得∠DAC=∠ECB,然后利用角角边证明△BEC≌△CDA即可;(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,由(1)可得△ABO≌△BCD(AAS),求出点C的坐标为(−3,5),然后利用待定系数法求直线l2的解析式即可;(3)分情况讨论:①若点P为直角时,②若点C为直角时,③若点D为直角时,分别建立(1)中全等三角形模型,表示出点D坐标,然后根据点D在直线y=−2x+1上进行求解.【题目详解】解:(1)∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△BEC≌△CDA(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:解得:,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=,∴点D的坐标为(,);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=,∴点D的坐标为(,),又∵点D在直线y=−2x+1上,∴,解得:k=,∴点D的坐标为(,);综合所述,点D的坐标为(,)或(4,−7)或(,).【题目点拨】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.20、(1),;(2),【分析】(1)代数式利用多项式乘以多项式、完全平方公式展开,去括号合并得到最简结果,将已知等式变形后代入计算即可求出值;(2)中括号内利用多项式乘以多项式展开,合并同类项后,再利用多项式除以单项式化成最简式,然后把的值代入计算即可.【题目详解】(1),∵,即,
∴原式;(2)[(ab+1)(ab-2)-2a2b2+2](-ab),∵,,∴原式.【题目点拨】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.21、(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【题目详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【题目点拨】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、∠AED=∠ACB,见解析【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE//BC,得出两角相等.【题目详解】解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4,∴EF//AB(内错角相等,两直线平行),∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换),∴DE//BC(同位角相等,两直线平行),∴∠AED=∠ACB(两直线平行,同位角相等).【题目点拨】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026湖南高速养护工程有限公司社会招聘任务型劳动合同制员工的46人笔试备考题库及答案解析
- 2026年芜湖无为市蜀山镇公开选拔村级后备干部12名笔试备考题库及答案解析
- 2026浙商中拓集团股份有限公司社会招聘19人笔试备考试题及答案解析
- 2026年石家庄信息工程职业学院单招职业技能考试备考题库含详细答案解析
- 2026四川长虹民生物流股份有限公司招聘货运专员岗位的1人笔试备考题库及答案解析
- 2026年福建莆田市城厢区顶墩实验学校中小学编外教师自主招聘若干人笔试备考试题及答案解析
- 2026年内蒙古商贸职业学院单招综合素质考试备考试题含详细答案解析
- 2026西藏华泰龙矿业开发有限公司招聘39人笔试备考题库及答案解析
- 2026浙江宁波市鄞州区公立学校招聘编外员工1人笔试备考题库及答案解析
- 2026农业农村部国际交流中心面向社会招聘编制外人员招聘2人笔试备考题库及答案解析
- 2026及未来5年中国电力工程总承包行业市场竞争态势及未来趋势研判报告
- 预备役介绍课件
- 2026元旦主题班会:马年猜猜乐新春祝福版 教学课件
- 四川省2025年高职单招职业技能综合测试(中职类)纺织服装类试卷(含答案解析)
- 2025年及未来5年市场数据中国磷化铟行业市场调研分析及投资战略咨询报告
- 《老年人误吸的预防专家共识》解读2
- 2025亚洲智能手机显现模块制造行业产能地理分布及供应链调整规划
- 项目二各类食物的营养价值9认识“五菜为充”(教案)-《食品营养与卫生》(高教第二版)同步课堂
- 非营利组织内部管理制度
- 2025年低速电动汽车市场分析报告
- 病原学标本送检及采集规范
评论
0/150
提交评论