




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省株洲市名校2024届八上数学期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.吉安市骡子山森林公园风光秀丽,2018年的国庆假期每天最高气温(单位:℃)分别是:22,23,22,23,x,1,1,这七天的最高气温平均为23℃,则这组数据的众数是()A.23 B.1 C.1.5 D.252.能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线3.如图,在小正三角形组成的网格中,已有7个小正三角形涂黑,还需要涂黑个小正三角形,使它们和原来涂黑的小正三角形组成新的图案既是轴对称图形又是中心对称图形,则的最小值为()A.3 B.4 C.5 D.64.若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣85.函数y=中,自变量x的取值范围是()A.x>2 B.x≥2 C.x<2 D.6.已知以下三个数,不能组成直角三角形的是()A.9、12、15 B.、3、2 C.0.3、0.4、0.5; D.7.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F,若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35° B.40° C.45° D.50°8.如图,≌,下列结论正确的是()A. B. C. D.9.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE的度数为()A.105° B.120° C.135° D.150°10.已知的外角中,若,则等于()A.50° B.55° C.60° D.65°11.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A. B.C. D.12.下列变形正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)证明:在运动过程中,点D是线段PQ的中点;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.14.如图:在中,,以顶点为圆心,适当长为半径画弧,分别交、于点、,再分别以点、为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的面积为____.15.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为_____16.如图1六边形的内角和为度,如图2六边形的内角和为度,则________.17.如图,在中,∠A=60°,D是BC边上的中点,DE⊥BC,∠ABC的平分线BF交DE于内一点P,连接PC,若∠ACP=m°,∠ABP=n°,则m、n之间的关系为______.18.的倒数是____.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AC,AB上,且BD=CE,DC=BF,连结DE,EF,DF,∠1=60°(1)求证:△BDF≌△CED.(2)判断△ABC的形状,并说明理由.20.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)求证:CF平分∠DCE.21.(8分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“湘一四边形”.(1)已知:如图1,四边形是“湘一四边形”,,,.则,,若,,则(直接写答案)(2)已知:在“湘一四边形”中,,,,.求对角线的长(请画图求解),(3)如图(2)所示,在四边形中,若,当时,此时四边形是否是“湘一四边形”,若是,请说明理由:若不是,请进一步判断它的形状,并给出证明.22.(10分)因式分解:(1).(2).23.(10分)(1)如图①,在四边形中,,点是的中点,若是的平分线,试判断,,之间的等量关系.解决此问题可以用如下方法:延长交的延长线于点,易证得到,从而把,,转化在一个三角形中即可判断.,,之间的等量关系________;(2)问题探究:如图②,在四边形中,,与的延长线交于点,点是的中点,若是的平分线,试探究,,之间的等量关系,并证明你的结论.24.(10分)如图,在中,,点、、分别在、、边上,且,.(1)求证:是等腰三角形;(2)当时,求的度数.25.(12分)如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.26.如图,将一长方形纸片放在平面直角坐标系中,,,,动点从点出发以每秒1个单位长度的速度沿向终点运动,运动秒时,动点从点出发以相同的速度沿向终点运动,当点、其中一点到达终点时,另一点也停止运动.设点的运动时间为:(秒)(1)_________,___________(用含的代数式表示)(2)当时,将沿翻折,点恰好落在边上的点处,求点的坐标及直线的解析式;(3)在(2)的条件下,点是射线上的任意一点,过点作直线的平行线,与轴交于点,设直线的解析式为,当点与点不重合时,设的面积为,求与之间的函数关系式.
参考答案一、选择题(每题4分,共48分)1、A【分析】先根据平均数的定义列出关于x的方程,求解x的值,继而利用众数的概念可得答案.【题目详解】解:根据题意知,22+23+22+23+x+1+1=23×7,解得:x=23,则数据为22,22,23,23,23,1,1,所以这组数据的众数为23,故选:A.【题目点拨】本题主要考查众数,解题的关键是掌握平均数和众数的概念.2、C【解题分析】试题解析:根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.故选C.考点:1.三角形的中线;2.三角形的面积.3、C【分析】根据轴对称图形和中心对称图形的概念即可得.【题目详解】解:如图所示,再涂黑5个小正三角形,即可使得它们和原来涂黑的小正三角形组成新的图案既是轴对称图形又是中心对称图形,故答案为:C.【题目点拨】本题考查了轴对称图形和中心对称图形的概念,掌握基本概念是解题的关键.4、A【解题分析】试题分析:根据整式的乘法可得(x+m)(x-8)=x2+(m-8)x-8m,由于不含x项,则可知m-8=0,解得m=8.故选A5、B【分析】根据二次根式的被开方数的非负性即可.【题目详解】由二次根式的被开方数的非负性得解得故选:B.【题目点拨】本题考查了二次根式的被开方数的非负性的应用、求函数自变量的取值范围问题,掌握理解被开方数的非负性是解题关键.6、D【解题分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【题目详解】A、92+122=152,能构成直角三角形,故不符合题意;B、()2+32=(2)2,能构成直角三角形,故不符合题意;C、0.32+0.42=0.52,能构成直角三角形,故不符合题意;D、(32)2+(42)2≠(52)2,不能构成直角三角形,故符合题意;故选D.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7、C【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【题目详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,AE⊥BD∴BD是AE的垂直平分线,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【题目点拨】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8、B【分析】全等三角形的性质:对应边相等,对应角相等,据此逐一判断即可的答案.【题目详解】∵△ABC≌△DEF,∴AB=DE,∠B=∠DEF,∠ACB=∠F,故A、C、D选项错误,不符合题意,∵△ABC≌△DEF,∴BC=EF,∴BC-CE=EF-CE,∴BE=CF,故B选项正确,符合题意,故选:B.【题目点拨】本题考查全等三角形的性质,正确找出对应边与对应角是解题关键.9、B【分析】由△ABC为等边三角形,可求出∠BDC=90°,由△DCE是等腰三角形求出∠CDE=∠CED=30°,即可求出∠BDE的度数.【题目详解】∵△ABC为等边三角形,BD为中线,∴∠BDC=90°,∠ACB=60°∴∠ACE=180°﹣∠ACB=180°﹣60°=120°,∵CE=CD,∴∠CDE=∠CED=30°,∴∠BDE=∠BDC+∠CDE=90°+30°=120°,故选:B.【题目点拨】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.10、B【分析】三角形的一个外角等于和它不相邻的两个内角的和.根据三角形的外角的性质计算即可.【题目详解】解:∵∠ACD是△ABC的一个外角,
∴∠ACD=∠B+∠A,
∵∠B=70°,∴∠A=∠ACD-∠B=125°-70°=55°,
故选:B.【题目点拨】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.11、D【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【题目详解】设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选D.【题目点拨】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.12、D【分析】根据分式的基本性质,等式的基本性质,分别进行判断,即可得到答案.【题目详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,正确;故选:D.【题目点拨】本题考查了分式的基本性质和等式的基本性质,解题的关键是熟练掌握分式的基本性质进行解题.二、填空题(每题4分,共24分)13、(1)见解析;(2)AP=2;(1)DE的长不变,定值为1.【分析】(1)过P作PF∥QC交AB于F,则是等边三角形,根据AAS证明三角形全等即可;(2)想办法证明BD=DF=AF即可解决问题;(1)想办法证明即可解决问题.【题目详解】(1)证明:过P作PF∥QC交AB于F,则是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在和中,,∴,∴DQ=DP;(2)解:∵,∴BD=DF,∵,∴,∴,∴AP=2;(1)解:由(2)知BD=DF,∵是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=1,为定值,即DE的长不变.【题目点拨】本题主要考查了三角形全等的性质及判定,以及三角形中的动点问题,熟练掌握相关几何综合的解法是解决本题的关键.14、6【解题分析】作⊥,由角平分线的性质知,再根据三角形的面积公式计算可得.【题目详解】作于.
由作图知是的平分线,
∵
∴,
∵,
∴,
故答案为:.【题目点拨】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15、【解题分析】先根据一次函数列出周长的式子,再根据垂线公理找到使周长最小时点P的位置,然后结合一次函数的性质、等腰直角三角形的性质求解即可.【题目详解】由题意,可设点P的坐标为周长为则求周长的最小值即为求OP的最小值如图,过点O作由垂线公理得,OP的最小值为OD,即此时点P与点D重合由直线的解析式得,,则是等腰直角三角形,是等腰直角三角形,解得则周长的最小值为故答案为:.【题目点拨】本题考查了一次函数的几何应用、等腰直角三角形的判定与性质、垂线公理等知识点,依据题意列出周长的式子,从而找到使其最小的点P位置是解题关键.16、0【分析】将两个六边形分别进行拆分,再结合三角形的内角和和四边形的内角和计算即可得出答案.【题目详解】如图1所示,将原六边形分成了两个三角形和一个四边形,∴=180°×2+360°=720°如图2所示,将原六边形分成了四个三角形∴=180°×4=720°∴m-n=0故答案为0.【题目点拨】本题考查的是三角形的内角和和四边形的内角和,难度适中,解题关键是将所求六边形拆分成几个三角形和四边形的形式进行求解.17、m+3n=1【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【题目详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∴∠PBC+∠PCB+∠ABP=1°-m°,∴3∠ABP=1°-m°,∴3n°+m°=1°,故答案为:m+3n=1.【题目点拨】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.18、.【分析】由倒数的定义可得的倒数是,然后利用分母有理化的知识求解即可求得答案.【题目详解】∵.∴的倒数是:.故答案为:.【题目点拨】此题考查了分母有理化的知识与倒数的定义.此题比较简单,注意二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.三、解答题(共78分)19、(1)见解析;(2)△ABC是等边三角形,理由见解析【分析】(1)用SAS定理证明三角形全等;(2)由△BDF≌△CED得到∠BFD=∠CDE,然后利用三角形外角的性质求得∠B=∠1=60°,从而判定△ABC的形状.【题目详解】解:(1)证明:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,∴△BDF≌△CED(SAS);(2)△ABC是等边三角形,理由如下:由(1)得:△BDF≌△CED,∴∠BFD=∠CDE,∵∠CDF=∠B+∠BFD=∠1+∠CDE,∴∠B=∠1=60°,∵AB=AC,∴△ABC是等边三角形;【题目点拨】本题考查全等三角形的判定和性质,等边三角形的判定,掌握判定定理正确推理论证是本题的解题关键.20、(1)详见解析;(2)详见解析.【分析】(1)根据平行线性质求出∠A=∠B,根据SAS推出△ACD≌△BEC;(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质即可证明CF平分∠DCE.【题目详解】(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∵,∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF⊥DE,∴CF平分∠DCE.【题目点拨】本题主要考查三角形的判定定理和性质定理以及等腰三角形的性质定理,掌握SAS判定三角形全等,是解题的关键.21、(1)85°,115°,1;(2)AC的长为或;(1)四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形,理由见解析【分析】(1)连接BD,根据“湘一四边形”的定义求出∠B,∠C,利用等腰三角形的判定和性质证明BC=DC即可.
(2)分两种情形:①如图1-1,∠B=∠D=90°时,延长AD,BC交于点E.②如图2-1中,∠A=∠C=60°时,过D分别作DE⊥AB于E,DF⊥BC于点F,分别求解即可解决问题.
(1)结论:四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形.如图2中,作CN⊥AD于N,AM⊥CB于M.利用全等三角形的性质证明AD=BC即可解决问题.【题目详解】解:(1)如图1中,连接BD.
∵四边形ABCD是湘一四边形,∠A≠∠C,
∴∠B=∠D=85°,
∵∠A=75°,
∴∠C=160°-75°-2×85°=115°,
∵AD=AB,
∴∠ADB=∠ABD,
∵∠ADC=∠ABC,
∴∠CDB=∠CBD,
∴BC=CD=1,
故答案为85°,115°,1.
(2)①如图1-1,∠B=∠D=90°时,延长AD,BC交于点E,
∵∠DAB=60°,
∴∠E=10°,
又∵AB=4,AD=1
∴BE=4,AE=8,DE=5,
∴CE=,
∴BC=BE-CE=4,
∴AC=,
②如图2-1中,∠A=∠C=60°时,过D分别作DE⊥AB于E,DF⊥BC于点F,
∵∠DAB=∠BCD=60°,
又∵AB=4,AD=1,
∴AE=,DE=BF=,
∴BE=DF=,
∴CF=DF•tan10°=×,
∴BC=CF+BF=,
∴AC=,
综合以上可得AC的长为或.
(1)结论:四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形.
理由:如图2中,作CN⊥AD于N,AM⊥CB于M.
∵∠ADB=∠ABC,
∴∠CDN=∠ABM,
∵∠N=∠M=90°,CD=AB,
∴△CDN≌△ABM(AAS),
∴CN=AM,DN=BM,
∵AC=CA,CN=AM,
∴Rt△ACN≌Rt△CAM(HL),
∴AN=CM,∵DN=BM,
∴AD=BC,∵CD=AB,
∴四边形ABCD是平行四边形.【题目点拨】此题考查四边形综合题,“湘一四边形”的定义,全等三角形的判定和性质,平行四边形的判定,解直角三角形,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.22、(1);(2)【分析】(1)先提公因式,再运用平方差公式;(2)先去括号,再运用完全平方公式.【题目详解】(1)===(2)==【题目点拨】考核知识点:因式分解.掌握各种因式分解基本方法是关键.23、(1);(2),理由详见解析.【分析】(1)先根据角平分线的定义和平行线的性质证得,再根据AAS证得≌,于是,进一步即得结论;(2)延长交的延长线于点,如图②,先根据AAS证明≌,可得,再根据角平分线的定义和平行线的性质证得,进而得出结论.【题目详解】解:(1).理由如下:如图①,∵是的平分线,∴∵,∴,∴,∴.∵点是的中点,∴,又∵,∴≌(AAS),∴.∴.故答案为:.(2).理由如下:如图②,延长交的延长线于点.∵,∴,又∵,,∴≌(AAS),∴,∵是的平分线,∴,∵,∴,∴,∵,∴.【题目点拨】本题考查了全等三角形的判定和性质、平行线的性质、角平分线的定义和等角对等边等知识,添加恰当辅助线构造全等三角形是解本题的关键.24、(1)见解析;(2)68°【分析】(1)根据条件即可证明△BDE≌△CEF,由全等三角形的性质得到DE=EF,即可得是等腰三角形;(2)先求出∠B的值,由(1)知∠BDE=∠CEF,由外角定理可得∠DEF=∠B.【题目详解】(1)证明:∵,∴∠B=∠C,在△BDE和△CEF中,,∴△BDE≌△CEF(SAS),∴DE=EF,则是等腰三角形;(2)解:∵,,∴∠B=∠C=,由(1)知△BDE≌△CEF,∴∠BDE=∠CEF,∵∠DEC=∠BDE+∠B,∴∠CEF+∠DEF=∠BDE+∠B,即∠BDE+∠DEF=∠BDE+∠B,∴∠DEF=∠B=68°.【题目点拨】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形的外角定理,解题的关键是熟练掌握全等三角形的判定与性质及角度的转换.25、(1)证明见解析;(2)∠ABE=40°.【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF(AAS),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新质生产力体制
- 脊髓性肌萎缩的临床护理
- 脓性指头炎的临床护理
- 生长激素释放抑制素瘤的健康宣教
- 渐冻症的临床护理
- 新质生产力中考政治
- 2025融资租赁合同融资与投资咨询协议
- 韶关高一地理试卷及答案
- 三亚一模数学试卷及答案
- 2025授权创作合同模板
- 高中数学不等式教学中的认知障碍诊断与干预机制研究
- 宁夏低空经济发展现状与策略实施路径探索
- 2024年西安市曲江第三中学行政人员及教师招聘考试真题
- 《化学键的断裂与形成》课件
- 2025年江苏泰州市泰兴经济开发区国有企业招聘笔试参考题库含答案解析
- 2025年山东省济南中考一模英语试题(含答案)
- 广西《健康体检重要异常结果管理规范》(材料)
- 2025-2030中国藜麦行业市场发展趋势与前景展望战略研究报告
- 驾培行业营销方案
- 学校校服定制合同协议
- 慢性肾脏病患者管理及一体化治疗
评论
0/150
提交评论