地震可恢复功能连梁研究综述与展望_第1页
地震可恢复功能连梁研究综述与展望_第2页
地震可恢复功能连梁研究综述与展望_第3页
地震可恢复功能连梁研究综述与展望_第4页
地震可恢复功能连梁研究综述与展望_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

地震可恢复功能连梁研究综述与展望剪力墙结构因具有良好的抗侧压能力而被广泛应用于高层建筑中,连梁作为剪力墙结构抗震的第一道防线,耗能能力关系到结构的抗震安全.在实际工程中,连梁的跨高比往往较小,在地震作用下易发生剪切破坏,降低结构的抗震性能.为了提高连梁的延性与抗震性能,国内外学者提出采用新型配筋方式,如对角暗柱配筋[1]和菱形配筋[2]等.采用新型配筋方式的连梁能有效提高延性,但在实际工程中,往往出现超筋、施工难度较大等问题.而且,传统的连梁在地震作用下一旦破坏,将难以修复或者修复成本过高,造成较大的经济损失.

为解决上述问题,FORTNEY等[3-4]提出了可恢复功能连梁,震后不需修复或稍加修复即可恢复其使用功能,包括可更换连梁和自复位连梁,主要方式在于将耗能和损伤集中在耗能构件,或通过设置预应力系统提供恢复力,有效减小墙肢的损伤,震后只需更换耗能构件而不改变原有结构.

本研究分析了可恢复功能连梁的工作原理,从削弱连梁截面、附加耗能装置以及提高连梁自复位能力3种实现可恢复功能连梁的途径,分别评述了国内外的研究现状,并提出一种新型自复位双连梁设计方案,为剪力墙结构连梁抗震设计提供了新途径.

1可恢复功能连梁工作原理自21世纪初以来,国内外学者对可恢复功能连梁展开了大量相关研究.可更换连梁最初通过在钢连梁跨中设置剪切型钢保险丝耗能,实现震后修复或更换[3].吕西林等[5]研究了可更换连梁的适用型式与构造方式.可更换连梁由耗能梁段与非耗能梁段组成,概念示意图见图1.耗能梁段一般采用易于更换的钢保险丝和耗能装置,非耗能梁段为型钢混凝土连梁或钢连梁.在地震作用下,两梁段之间形成刚度差,使耗能与变形主要集中在耗能梁段,而耗能梁段与非耗能梁段之间采用高强螺栓和钢板相连接,震后对耗能梁段进行更换.

自复位连梁是在可更换连梁的基础上改变结构的材料特性或构造措施,使连梁满足耗能要求的同时,具备自复位能力,减小结构主体的损伤.自复位连梁由连梁主体、耗能系统和预应力系统组成(图2).连梁主体主要由型钢组成,具有一定的初始刚度.耗能系统由角钢和阻尼器组成,预应力系统由形状记忆合金(shapememoryalloys,SMA)、预应力筋或高性能复合纤维材料等弹性材料提供恢复力.

图1可更换连梁概念示意图Fig.1Conceptofreplaceablecouplingbeam.

图2自复位连梁概念示意图Fig.2(Coloronline)Conceptofself-centeringcouplingbeam.

当连梁主体发生变形,耗能系统通过材料塑性变形耗能,预应力系统提供恢复力,使连梁满足耗能要求,同时减小甚至消除结构主体的残余变形.震后根据结构的损伤程度对连梁主体、耗能系统以及预应力系统进行修复或整体更换.

2可恢复功能连梁研究现状基于可恢复功能连梁的工作原理,国内外学者展开大量的深入研究,促进了可恢复功能连梁的发展与应用.实现连梁的可恢复功能主要有3种途径:削弱连梁截面、附加耗能装置与提高连梁自复位能力.

2.1削弱连梁截面

传统连梁在地震作用下依靠自身塑性变形耗能,因而使连梁整体进入塑性,震后难以修复或更换.因此,学者们尝试对连梁的跨中截面进行削弱,使连梁的变形与耗能主要集中在连梁跨中部分,减小连梁非耗能梁段与墙肢的损伤,起到保险丝的作用,震后更换保险丝.此外,还有一些学者在实腹式钢连梁的基础上,削弱钢连梁的腹板截面形成钢桁架连梁型式,杆件与墙肢采用铰接连接,震后对钢桁架连梁进行整体更换.

2.1.1削弱连梁跨中截面

在连梁跨中截面采用组合钢板代替部分连梁,组合钢板与连梁中预埋钢板通过螺栓连接,即可削弱连梁跨中截面,组合钢板又称为保险丝.保险丝能够发挥钢材的优势性能,提供一定的初始刚度,耗能能力稳定,广泛应用于型钢混凝土连梁和钢连梁.

对于型钢混凝土连梁,吕西林等[6]提出3种不同功能用途的保险丝,试验结果表明,保险丝具有有稳定的耗能能力以及良好的低周疲劳劣化特性,3种保险丝各有特点,能适应不同连梁跨度的结构.随后,吕西林等[7-8]为进一步研究了可更换保险丝连梁的抗震性能,设计了带可更换连梁的混凝土结构振动台试验(图3).与钢筋混凝土连梁结构相比,损伤集中在保险丝上,具有良好的耗能能力.但在强震中保险丝突然失效后,设置可更换连梁的结构的层间位移和楼层加速度变大.范重等[9]针对保险丝与连梁连接节点问题,提出带齿形键槽的可更换连梁.该可更换连梁传力可靠,构造简单,可有效减小结构在罕遇地震作用下的层间位移角,降低破坏程度.此外,研究发现型钢混凝土连梁的非耗能梁段出现大量裂纹、混凝土剥落等问题,增加震后的修复难度与成本.

对于钢连梁,FORTNEY等[10]提出可更换保险丝钢连梁,研究发现该保险丝熔断,连接结构具有良好的耗能能力与延性.在此基础上,SHAHROOZ等[11]改良了该可更换保险丝钢连梁(图4),研究表明,可更换保险丝钢连梁的耗能能力良好,因保险丝为主要的耗能部件,连梁损伤主要集中在保险丝上,结构的强度和刚度没有大幅度降低,有效减小了连梁与墙肢的塑性变形.纪晓东等[12-13]研究钢连梁的抗震性能发现连梁会发生加劲肋-腹板焊缝断裂或翼缘-端板焊缝断裂,并提出端板-抗剪键或连接板连接是有效的连接方式,这种连接方式传力可靠、耗能稳定且易于更换[14].

图3设置带可更换连梁的试验结构模型[7]Fig.3Structuralmodelwithreplaceablecouplingbeam[7].

图4带保险丝的可更换钢连梁[11]Fig.4Overviewofreplaceablesteelcouplingbeamswithamidspanfuse[11].

为进一步研究可更换钢连梁的抗震性能,学者们还考虑了钢筋混凝土楼板的影响[15-18],发现减小耗能梁段的长度,能够提高结构的承载力、抗侧压刚度、耗能梁段的极限塑性转角和超强系数,且楼板与可更换钢连梁分隔能有效减小楼板的损伤,但降低了结构的延性和耗能能力.此外,钢连梁在循环往复荷载作用下,钢腹板往往会发生平面外失稳,因此必须采取设置水平或竖向加劲肋等措施防止或延缓腹板屈曲,以保证结构的安全.

2.1.2削弱连梁钢腹板截面

在实腹式钢连梁的研究中发现,当钢连梁的跨高比较小时,在地震作用下连梁的主拉应力与主压应力呈对角交叉分布.通过削弱连梁钢腹板应力小的截面,进而提出钢桁架连梁.该连梁通过弦杆承受弯矩,腹杆承受剪力,这种受力模式更符合连梁在地震作用下的实际受力情况.邓志恒等[19-20]提出一种新型钢组合桁架连梁(图5),发现该钢桁架连梁具有较高的承载力与良好的延性,耗能能力良好,设置交叉腹杆能提高整体刚度,能更好地发挥钢材的性能.随后,提出刚度比与面积比的概念,即当腹杆截面过大时会导致弦杆过快发生弯曲破坏,当弦杆过大时会减小腹杆的耗能能力.通过优化连梁的抗震设计方法,能有效提高结构的抗震性能[21].

图5新型钢桁架连梁[20](a)试验装置;(b)结构破坏模型Fig.5(a)Testdeviceand(b)structuralfailuremodelofnoveltypeofsteeltrusscouplingbeam[20].

钢桁架连梁在地震作用下主要通过斜腹杆塑性变形耗散能量,因此通过提高腹杆的耗能能力,进而能提高钢桁架连梁的抗震性能.学者们开发了防屈曲约束腹杆[22-25]和带摩擦装置腹杆[26],并应用于可更换桁架连梁[27-28](图6).研究表明带腹杆的可更换钢桁架连梁能够减小层间位移,降低梁和墙肢的转角,有效提高结构的抗震性能.但是存在以下问题:①钢桁架结构的杆件连接较为复杂,增加施工难度;②钢桁架连梁削弱整体刚度,腹杆可能发生面外失稳,降低耗能能力;③不适用于高跨比较小的连梁.

图6可更换钢桁架连梁[28]Fig.6(Coloronline)Replaceablesteeltrusscouplingbeam[28].

为解决腹杆屈曲问题,有学者提出由钢腹板代替腹杆的可更换钢桁架连梁[29-30](图7),发现钢腹板提高了连梁的强度与刚度,试件均为延性破坏,钢腹板的非弹性变形较为集中,具有良好的变形和耗能能力.但钢腹板在大变形下仍会发生平面外失稳,可以在钢腹板两侧采用高阻尼混凝土盖板提高约束作用,有效防止钢腹板过早发生面外失稳[31].

图7可拆卸式消能减震钢桁架连梁[29]Fig.7Replaceablesteeltrusscouplingbeamwithenergydissipatingdevices[29].

2.2附加耗能装置

由于保险丝的残余变形较大以及钢桁架连梁的杆件连接较为复杂,震后更换的难度大,因此学者们尝试通过在连梁附加耗能装置以提高耗能能力,变形主要集中在耗能装置上,以减小墙肢以及连梁的损伤.耗能装置包括单一耗能装置与复合耗能装置.单一耗能装置主要分为两类:一类是位移相关型的金属阻尼器与摩擦阻尼器,另一类是速度相关型的黏弹性阻尼器.复合耗能装置由两个或两个以上的阻尼器协同工作,能发挥各自阻尼器的性能优势,具有广阔的工程应用前景.

2.2.1单一耗能装置

黏弹性阻尼器是通过流体运动产生粘滞阻力的原理制成的,在小位移变形即可发挥耗能作用.LYONS等[32]提出一种带黏弹性耦合阻尼器的可更换连梁方案(图8),该连梁由削弱截面的保险丝与黏弹性阻尼器组成,削弱截面的保险丝能在黏弹性阻尼器达到极限应变时,发挥耗能作用以保护黏弹性阻尼器.研究表明,该连梁能有效减小小震作用下的层间位移、加速度以及楼层剪力,并且大幅度降低了震后修复成本[32].但MONTGOMERY等[33-34]发现该阻尼器的抗震性能在中、大震作用下效果不明显.此外,黏弹性阻尼器的力学性能可能受温度、加载频率的影响,加工制作比较困难,价格较高,目前在实际工程中应用较少.

图8黏弹性耦合阻尼器[32]Fig.8(Coloronline)Viscoelasticcouplingdamper[32].

摩擦阻尼器具有较好的库仑特性,通过产生较大的附加阻尼耗散能量.与黏弹性阻尼器相比,摩擦阻尼器的滞回曲线饱满,能提供一定的初始刚度.因此,CHUNG等[35]提出一种带摩擦阻尼器的可更换钢连梁(图9),外部构件与钢连梁通过螺栓连接,中间层采用摩擦板提高可更换连梁的耗能能力,非线性时程分析结果表明新型结构耗能能力良好,能有效减小顶层水平位移和结构损伤.摩擦面是摩擦阻尼器力学性能的关键,采用由专用摩擦材料制成的刹车片作为摩擦面能获得优异的性能,耗能效果更好[36].在此基础上,曲哲等[37]考虑了混凝土楼板的影响,拟静力试验结果表明,当连梁弦转角为4%时,RC楼板出现6mm宽的弯曲裂缝,楼板损伤严重,可能会影响建筑结构震后恢复功能.此外,摩擦阻尼器在长期使用过程中,摩擦材料会因冷凝固或冷粘结改变摩擦系数,不仅增加了后期维护成本,也会影响其正常使用功能.

图9带摩擦阻尼器可更换钢连梁[35](a)立面图;(b)剖面图Fig.9(Coloronline)(a)Elevationand(b)profileofsteelreplaceablecouplingbeamwithfrictiondamper[35].

与其他类型阻尼器相比,金属阻尼器的性能更加全面.一方面,金属阻尼器不需要任何能量输入或控制命令,具有稳定的耗能能力;另一方面,金属阻尼器成本低,后期维护简单.因此,学者们研发了一系列的带缝软钢连梁阻尼器[38-39]与剪切钢板连梁阻尼器[40-42](图10).金属连梁阻尼器具有稳定的耗能能力,能有效提高连梁的等效阻尼比;带金属阻尼器的可更换连梁结构的耗能能力强,损伤集中在阻尼器中,能有效减小结构损伤.值得注意的是,金属连梁阻尼器不应完全代替整个连梁,因而使得连梁的跨高比增大,容易导致钢板发生面外屈曲[43-44].另外,由于可更换连梁变形集中在阻尼器中,产生了较大的竖向变形,这可能会对楼板造成损伤[45].

图10金属连梁阻尼器[42]Fig.10Metalliccouplingbeamdamper[40].

然而,这些金属连梁阻尼器只有一个屈服点,不能适应不同烈度地震.为此,潘鹏等[46]研发一种新型钢制双级屈服连梁阻尼器(图11).该阻尼器由2个弯曲构件与1个剪切构件组成,在中震作用下,剪切构件先屈服耗能而弯曲构件保持弹性状态;在大震作用下,弯曲构件发生屈服,实现两级屈服耗能,提高连梁的耗能能力.试验结果表明试件均表现为双阶段屈服机制,耗能稳定,试件断裂时转角振幅达到1/15,具有较大的变形能力.

图11钢制双级屈服连梁阻尼器[46]Fig.11(Coloronline)Steeldouble-stageyieldingcouplingbeamdamper[46].

2.2.2复合耗能装置

单一阻尼器具有各自的优点和适用范围,学者们结合不同阻尼器的特点,提出复合阻尼器,即将几种不同类型的阻尼器组合协同工作,充分发挥各自阻尼器的性能优势,因而获得更好的耗能能力.KIM等[47]提出一种由U型钢与高阻尼橡胶组合的复合阻尼器(图12),该复合阻尼器能降低结构的加速度响应,提高结构的耗能能力,且在大变形条件下仍能保持结构的稳定性.随后,中国学者们展开大量相关研究,研发了一系列的复合阻尼器,对提高可更换连梁的抗震性能具有重大意义.蒋欢军等[48]研发,金属-黏弹性复合阻尼器,陈云等[49]研发,O型钢板-黏弹性复合阻尼器,王玉璋等[50]研发,黏滞性与黏弹性的高阻尼黏弹性橡胶阻尼器,周云等[51-52]研发钢管铅芯阻尼器与铅-黏弹性复合阻尼器.这些复合阻尼器具备良好的抗侧刚度,同时满足不同变形情况下的耗能.与单一阻尼器相比,复合阻尼器的滞回曲线饱满,耗能能力良好,并且可根据不同的性能要求调节复合阻尼器的设计参数.

图12复合阻尼器[47]Fig.12(Coloronline)Compositedamper[47].

在复合阻尼器研究的基础上,学者们进一步研究附加复合阻尼器的可更换连梁的抗震性能.蒋欢军等[53]对安装金属-黏弹性复合连梁阻尼器的高层建筑进行数值分析(图13),发现新型结构的损伤集中在复合阻尼器,减小了混凝土非耗能梁段以及墙肢的损伤,能显著改善高层建筑的抗风性能与抗震性能,但新型结构的抗侧刚度与加速度响应比传统结构低.蒋欢军等[54]随后又提出带O型钢板-黏弹性复合阻尼器的可更换连梁,该复合阻尼器能发挥黏弹性阻尼器的优点,同时具备金属阻尼器良好的抗侧刚度.当变形较小时,仅黏弹性阻尼器耗能;当变形较大时,两阻尼器协同耗能,有效减小结构的层间位移角和剪力墙损伤.周云等[55-56]也对附加复合阻尼器的可更换连梁进行研究,证明了复合阻尼器耗能稳定,有效减缓主体结构构件的塑性破坏,提高结构的整体抗震性能.

图13可更换连梁示意图[53]Fig.13Schematicdrawingofreplaceablecouplingbeam[53].

2.3提高连梁自复位能力

在可更换连梁基础上引入弹性材料提供恢复力,能有效减小甚至消除结构的残余变形.若弹性材料没有损坏,则构件能发挥正常使用功能,无需修复或更换构件,极大地降低了经济成本,具有良好的应用前景.为此,通过改进阻尼器的构造措施以及改变构件材料特性,能提高可更换连梁的自复位能力和耗能能力.

在构造措施层次上,毛晨曦等[57]提出一种带SMA阻尼器的可更换连梁(图14),连梁的变形集中在SMA阻尼器上,能够减小残余变形,有效降低结构的损伤[58].应注意的是,SMA阻尼器与墙肢的刚度比应在合适的范围,比值过大或者过小都会影响结构的抗震性能[59].钱辉等[60-61]提出一种自复位耗能连梁,对一幢10层联肢剪力墙结构进行动力时程分析,发现自复位连梁能有效减小剪力墙结构层间剪力和层间位移角,耗散大量能量,减少残余位移,对剪力墙结构起到了很好的保护作用.

图14SMA阻尼器部件组装图[57]Fig.14(Coloronline)AssemblypartsoftheSMAdamper[57].

在材料特性层次方面,KURAMA等[62]提出了一种后张拉预应力筋钢连梁,该钢连梁通过预应力筋贯穿连梁锚固在墙肢外表面,墙肢与连梁采用角钢连接.该连梁具有良好的耗能能力与自复位能力,但连梁与墙肢界面发生较大的变形.采用混凝土对接触界面进行加固处理,能有效减小结构的残余变形[63-64].在此基础上,ZAREIAN等[65]提出由摩擦阻尼器代替角钢耗能的方案,采用螺旋钢筋焊接在预埋钢板上以限制混凝土的变形,使其能够承受压应力(图15),试验结果表明,采用摩擦阻尼器的构件具有良好的抗侧向刚度、延性和耗能能力,能够承受高达8%的非线性循环大变形,残余位移较小,同时解决了角钢低周疲劳断裂问题.但墙肢一旦发生较大的位移变形,预应力筋难以提供恢复力作用.

为了提高连梁的自复位能力,学者们采用SMA材料提高系统的变形能力.SMA具有形状记忆效应与超弹性性能,在循环往复荷载作用下,卸载后能够恢复初始形状[66].自复位连梁在地震作用下,梁的伸长效应显著,梁末端的混凝土损伤严重甚至破坏楼板.因此,在连梁两端开缝,在间隙中设置抗剪键以保证连梁的抗剪切能力,弹性段与摇摆段通过SMA或预应力筋连接,可使得连梁在地震作用下不受梁伸长的影响实现中心线摆动[67-69],如图16.在低周反复荷载作用下,空隙的存在能够满足梁的变形要求,从而减小甚至消除梁的伸长效应.目前SMA材料价格依然昂贵,且SMA的等效阻尼比较小,耗能能力有限,因此往往需要与其他材料协同工作.

图15后张无黏结预应力钢连梁[65]Fig.15(Coloronline)Post-tensionedsteelcouplingbeam[65].

图16自复位钢连梁结构示意图[67]Fig.16(Coloronline)Structuraldetailsofself-centeringsteelcouplingbeam[67].

3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论