




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)第十九届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每小题10分,共80分)1.(10分)如图,边长为12米的正方形池塘周围是草地,池塘边A、B、C、D处各有一根木桩,且AB=BC=CD=3米,现用长4米的绳子将一头羊拴在其中的某根木桩上,为了使羊在草地上活动区域的面积最大,应将绳子拴在处的木桩上.2.(10分)在所有是20的倍数的自然数中,不超过3000并且是14的倍数的数之和是.3.(10分)从1~8这八个自然数中,任取三个数,其中没有连续自然数的取法有种.4.(10分)如图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为平方厘米.5.(10分)如果<<,则“○”与“□”中可以填入的非零自然数之和最大为.6.(10分)如图,三个圆交出七个部分.将整数1~7分别填到七个部分中,要求每个圆内的四个数字的和都相等.那么和的最大值是.7.(10分)学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有种租车方案.8.(10分)平面上的五个点A,B,C,D,E满足:AB=16厘米,BC=8厘米,AD=10厘米,DE=2厘米,AC=24厘米,AE=12厘米.如果三角形EAB的面积为96平方厘米,则点A到CD的距离等于厘米.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.(10分)把n个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.如图给出了n=6时所有的不同放置方法,那么n=8时有多少种不同放置方法?10.(10分)有一个杯子装满了浓度为15%的盐水,有大、中、小铁球各一个,它们的体积比为10:5:3,首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球,其次把中球沉入盐水杯中,又将它取出,接着将大球沉入盐水杯中后取出,最后在杯中倒入纯水至杯满为止,此时杯中盐水的浓度是多少?11.(10分)清明节同学们乘车去烈士陵园扫墓,如果汽车行驶1个小时后将车速提高五分之一,就可以比预定时间提前10分钟赶到;如果该车先按原速行驶60千米,再将速度提高三分之一,就可以比预定时间提前20分钟赶到.那么从学校到烈士陵园有多少千米?12.(10分)如图,在三角形ABC中,AF=2BF,CE=3AE,CD=2BD,连接CF交DE于P点,求的值.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)在右边的算式中,字母a,b,c,d和“□”代表十个数字0到9中的一个,其中a,b,c,d四个字母代表□□□□不同的数字,求a,b,c,d代表的数字之和.14.(15分)从连续自然数1,2,3,…,2014中取出n个数,使这n个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.试求n的最大值,并说明理由.
第十九届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)如图,边长为12米的正方形池塘周围是草地,池塘边A、B、C、D处各有一根木桩,且AB=BC=CD=3米,现用长4米的绳子将一头羊拴在其中的某根木桩上,为了使羊在草地上活动区域的面积最大,应将绳子拴在B处的木桩上.【分析】分别把A、B、C、D这四个点为圆心的扇形面积算出来,再进行比较即可选择出正确答案.【解答】解:①SA=π×42+×π×(4﹣3)2=8.25π(平方米);②SB=π×42=12π(平方米);③SC=π×42+×π×(4﹣3)2=8.25π(平方米);④SD=π×42=8π(平方米),π<8.25π<12π,所以为了使羊在草地上活动区域的面积最大,应将绳子拴在B处的木桩上.故答案为:B.2.(10分)在所有是20的倍数的自然数中,不超过3000并且是14的倍数的数之和是32340.【分析】在所有20的倍数中不超过2014并且是14的倍数最小是140,最大是2940,共21个,然后根据“高斯求和”的方法解答.【解答】解:20=2×2×514=2×720和14的最小公倍数是:2×2×5×7=1403000÷140≈21.4140×21=2940所以在所有20的倍数中不超过3000并且是14的倍数最小是140,最大是2940,共21个,(140+2940)×21÷2=3080×21÷2=32340.答:在所有是20的倍数的自然数中,不超过3000并且是14的倍数的数之和是32340.故答案为:32340.3.(10分)从1~8这八个自然数中,任取三个数,其中没有连续自然数的取法有20种.【分析】首先取3个所有的方法有=56种连续的有两个连续另外一个不连续,如果这两个连续的数在两端,是12或78,则各有5种不同的方法,如:124,125,126,127,128,如果这两个两个数在中间,是23、34、45、56、67,则各有4种不同的方法,如:235,236,237,238;这样一共有5×2+5×4种方法;三个连续的有123,234,345,456,567,678,6种情况;用总种数减去有连续自然数的种数,就是符合要求的数.【解答】解:==56(种)有两个连续数的可能是:5×2+5×4=30(种)有三个连续的数的可能有6种:56﹣30﹣6=20(种)答:没有连续自然数取法为20种.故答案为:20.4.(10分)如图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为56平方厘米.【分析】按题意,可以将图中剪影分割成若干部分,然后标出每部分的面积,利用剪切和拼接的性质求得每部分的面积,最后求和.【解答】解:根据分析,如图,将剪影分割,通过分割和格点面积公式可得小马剪影的总面积=0.5+3+16+2+1+2.5+3+0.5+1.5+12+3+2+0.5+3+0.5+1+2+1.5+0.5=56(平方厘米)故答案是:56.5.(10分)如果<<,则“○”与“□”中可以填入的非零自然数之和最大为77.【分析】将与,和都通分,然后根据分数大小比较的方法以及不等式的性质确定“○”与“□”的和的最大值即可解决问题.【解答】解:<通分为:所以,4×□>35,则□≥9;与通分为:所以,○×□<77,则,○×□的乘积最大为76,只要使“○”与“□”之和最大,应当使两数的差最大,76=1×76,所以,当○=1,□=76时,两数之和最大,即,○+□=1+76=77.答:“○”与“□”中可以填入的非零自然数之和最大为77.故答案为:77.6.(10分)如图,三个圆交出七个部分.将整数1~7分别填到七个部分中,要求每个圆内的四个数字的和都相等.那么和的最大值是19.【分析】因为使得每个圆内的四个数字的和都相等,且和最大值时,7最大,就把7写在最中间,还剩的3个较大数字6、5、4,填在两圆公共的部分,最后剩下的1、2、3;1与7、6、5结合;2与7、6、4结合;3与7、5、4结合,那么每个圆内的四个数字的和都是19,据此解答即可.【解答】解:根据分析可得,所以和的最大值是19.故答案为:19.7.(10分)学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有2种租车方案.【分析】设42座大巴x辆,20座中巴y辆,依题意有:42x+20y=482,求方程的整数解,即得答案.【解答】设42座大巴x辆,20座中巴y辆,依题意有:42x+20y=482,两边除以2有:21x+10y=24110y个位数字是0,所以21x的个位数字是1,x只能取1或11,x=1时,y=22;x=11时,y=1.所以有2种租车方案.达:有2钟租车方案.8.(10分)平面上的五个点A,B,C,D,E满足:AB=16厘米,BC=8厘米,AD=10厘米,DE=2厘米,AC=24厘米,AE=12厘米.如果三角形EAB的面积为96平方厘米,则点A到CD的距离等于4.62厘米.【分析】确定五个点的位置关系.AB+BC=16+8=24=AC,所以,A、B、C在一条直线,同样D在A、E之间;因为△EAB面积是24平方厘米,而只有角A是90度直角时,其面积才是,所以,角A是直角;则△CAD也是直角三角形,根据勾股定理可以求出CD=13厘米;设:点A到CD的距离为X(也就是CD边上的高),列出方程求出X即可.【解答】解:按照题意,可以得知,ABC是在一条直线上,否则形不成AC=12厘米,同样,ADE也在一条直线上.因为:△EAB面积是24平方厘米,而只有角A是90度直角时,其面积才是:AB×(AD+DE)÷2=8×6÷2=24,所以,角A是直角.A是直角,则△CAD也是直角三角形,根据勾股定理CD×CD=AD2+AC2,解得CD=13厘米.设:点A到CD的距离为X(也就是CD边上的高)列出方程:13×X/2=5×12÷2故:X≈4.62厘米二、解答下列各题(每题10分,共40分,要求写出简要过程)9.(10分)把n个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.如图给出了n=6时所有的不同放置方法,那么n=8时有多少种不同放置方法?【分析】可以分层讨论各种可能的情况,然后求和汇总,由于n=8时,最多只能分3层放置,故不难求得总共的不同的放置方法.【解答】解:根据分析,分层数不同讨论:①层数为2时,7+1有6种;6+2有4种;5+3有2种;②层数为3时,5+2+1有3种;4+3+1有2种;故总共只有:6+4+2+3+2=17种.故答案是:17.10.(10分)有一个杯子装满了浓度为15%的盐水,有大、中、小铁球各一个,它们的体积比为10:5:3,首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球,其次把中球沉入盐水杯中,又将它取出,接着将大球沉入盐水杯中后取出,最后在杯中倒入纯水至杯满为止,此时杯中盐水的浓度是多少?【分析】溢出水量实际就是大球的体积,即整杯盐水的10%×=,所以倒满水后浓度变为,据此解答即可.【解答】解:10%×=,==10%,答:此时杯中盐水的浓度是10%.11.(10分)清明节同学们乘车去烈士陵园扫墓,如果汽车行驶1个小时后将车速提高五分之一,就可以比预定时间提前10分钟赶到;如果该车先按原速行驶60千米,再将速度提高三分之一,就可以比预定时间提前20分钟赶到.那么从学校到烈士陵园有多少千米?【分析】先求出行驶1个小时后的预定时间,所用的时间就是预定时间的1÷(1+)=,则预定时间是10÷(1﹣)=60分钟,所以全程的预定时间就是1小时+60分钟=120分钟;再求出所用时间,所用时间就是预定时间的1÷(1+)=,即提前120×(1﹣)=30分钟,最后求出60千米所对应的分率即1﹣,解答即可.【解答】解:如果行驶1个小时后,将车速提高五分之一,则行驶1个小时后所用的时间就是预定时间是1÷(1+)=,则预定时间是10÷(1﹣)=60分钟,所以全程的预定时间就是1小时+60分钟=120分钟;如果该车先按原速行驶60千米,再将速度提高三分之一,则所用时间就是预定时间的1÷(1+)=,即提前120×(1﹣)=30分钟,但实际却提前了20分钟,说明有20÷30=的路程提高了速度,60÷(1﹣)=60÷=180(千米),答:从学校到烈士陵园有180千米.12.(10分)如图,在三角形ABC中,AF=2BF,CE=3AE,CD=2BD,连接CF交DE于P点,求的值.【分析】如图,连接DF,根据已知推出△BFD≌△BAC,推出∠BDF=∠BCA,求出DF∥CA,=,求出=,=,根据平行线分线段成比例定理得出即可.【解答】解:连接DF,因为AF=2BF,CD=2BD,所以==,因为∠B=∠B,所以△BFD≌△BAC,所以∠BDF=∠BCA,所以DF∥CA,=,因为CE=3AE,所以=,所以=,因为DF∥CA,所以==.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.(15分)在右边的算式中,字母a,b,c,d和“□”代表十个数字0到9中的一个,其中a,b,c,d四个字母代表□□□□不同的数字,求a,b,c,d代表的数字之和.【分析】首先分析四位数减去三位数的结果是个位数,那么情况是可以枚举出来的,分情况排除即可.【解答】解:依题意可知:四位数﹣三位数=2只能有2种可能,1000﹣998=2或者1001﹣999=2.那么要求5+c=9,a+4=9.所以a=5,c=4.所以b+d的结果可以为10也可为11.那么a+b+c+d的结果为19或20.综上所述答案为19或20.14.(15分)从连续自然数1,2,3,…,2014中取出n个数,使这n个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.试求n的最大值,并说明理由.【分析】首先将这些数分组4个数的有5组:{1,7,49,343},{2,14,98,686},{3,21,147,1029}{4,28,196,1372}{5,35,245,1715}3个数的有{6,42,294}{8,56,392}{9,63,441}…{41,287,2009}注意第一个数跳过7、14、21、28、35等数,共有41﹣6+1﹣5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CGCC 47-2021数字消费券服务规范
- T/CECS 10363-2024薄壁不锈钢管件用法兰及法兰接头
- T/CECS 10300-2023钢网格结构螺栓球节点用封板、锥头和套筒
- T/CECS 10226-2022抗裂硅质防水剂
- T/CECS 10069-2019绿色建材评价软化设备
- T/CCOA 43-2023地下仓粮油储藏技术规范
- T/CCASC 6005-2022氯碱行业离子膜法电解工艺碳排放核算标准
- 安全督察面试题及答案
- 股权资产面试题及答案
- 会计学考试题及答案
- 借款分期付款协议书
- 2025届陕西省高三新高考全真模拟政治试题(原卷版+解析版)
- GB/T 30819-2024机器人用谐波齿轮减速器
- DL-T5394-2021电力工程地下金属构筑物防腐技术导则
- 组织人事业务知识测试二
- 浙江省温州市2022年初中科学中考试题及参考答案
- 食品经营操作流程图
- 排桩+锚索深基坑安全专项施工方案
- 大型桥梁高程控制网的布设和精度分析
- 普拉提运动对大学生圆肩驼背体态矫正的研究
- 成本管理毕业论文参考文献大全范文
评论
0/150
提交评论