




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省铜仁市沿河县2024届八上数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.一个正比例函数的图象过点(2,﹣3),它的表达式为()A. B. C. D.2.计算22+(-1)°的结果是().A.5 B.4 C.3 D.23.如图,在平行四边形中,,若,,则的长是()A.22 B.16 C.18 D.204.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A.2 B.4 C.6 D.35.如图,过边长为2的等边三角形ABC的顶点C作直线l⊥BC,然后作△ABC关于直线l对称的△A′B′C,P为线段A′C上一动点,连接AP,PB,则AP+PB的最小值是()A.4 B.3 C.2 D.2+6.如图所示:已知两个正方形的面积,则字母A所代表的正方形的面积为()A.4 B.8 C.64 D.167.下列二次根式中是最简二次根式的为()A. B. C. D.8.如图,在中,,平分,交于点,,交的延长线于点,,则下列结论不正确的是()A. B. C. D.9.已知一个多边形的每个内角都等于,则这个多边形一定是()A.七边形 B.正七边形 C.九边形 D.不存在10.已知样本数据1,2,4,3,5,下列说法不正确的是()A.平均数是3 B.中位数是4C.极差是4 D.方差是211.如果三角形的一个内角等于其它两个内角的差,那么这个三角形是()A.锐角三角形 B.钝角三角形C.直角三角形 D.斜三角形12.近似数0.13是精确到()A.十分位 B.百分位 C.千分位 D.百位二、填空题(每题4分,共24分)13.已知是二元一次方程组的解,则2m+n的值为_____.14.的立方根是__________.15.若有意义,则x的取值范围是__________16.一个三角形三边长分别是4,6,,则的取值范围是____.17.如图,将等腰绕底角顶点A逆时针旋转15°后得到,如果,那么两个三角形的重叠部分面积为____.18.小明家1至6月份的用水量统计如图所示,根据图中的数据可知,5月份的用水量比3月份的用水量多_____吨.三、解答题(共78分)19.(8分)某校团委举办了一次“中国梦我的梦”演讲比赛满分10分,学生得分均为整数,成绩达6分以上(含6分)为合格,达到9分以上(含9分)为优秀.如图所示是这次竞赛中甲、乙两组学生成绩分布的条形统计图.(1)补充完成下列的成绩统计分析表:组别平均分中位数方差合格率优秀率甲63.4190%20%乙7.11.6980%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是______组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.20.(8分)如图,点在上,,且,.求证:(1);(2).21.(8分)在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=50°,求∠AEB的度数;(2)求证:∠AEB=∠ACF;(3)试判断线段EF、BF与AC三者之间的等量关系,并证明你的结论.22.(10分)已知点在轴正半轴上,以为边作等边,,其中是方程的解.(1)求点的坐标.(2)如图1,点在轴正半轴上,以为边在第一象限内作等边,连并延长交轴于点,求的度数.(3)如图2,若点为轴正半轴上一动点,点在点的右边,连,以为边在第一象限内作等边,连并延长交轴于点,当点运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.23.(10分)在中,是角平分线,.(1)如图1,是高,,,则(直接写出结论,不需写解题过程);(2)如图2,点在上,于,试探究与、之间的数量关系,写出你的探究结论并证明;(3)如图3,点在的延长线上,于,则与、之间的数量关系是(直接写出结论,不需证明).24.(10分)化简:25.(12分)如图,中,,,垂足为,,,垂足分别是、.(1)求证:;(2)若,写出图中长度是的所有线段.26.如图①,在A、B两地之间有汽车站C,客车由A地驶往C站,货车由B地驶往A地,两车同时出发,匀速行驶,图②是客车、货车离C站的路程、(km)与行驶时间x(h)之间的函数图像.(1)客车的速度是km/h;(2)求货车由B地行驶至A地所用的时间;(3)求点E的坐标,并解释点E的实际意义.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据待定系数法求解即可.【题目详解】解:设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.【题目点拨】本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键.2、A【解题分析】分别计算平方、零指数幂,然后再进行实数的运算即可.【题目详解】解:原式=4+1=5故选:A.【题目点拨】此题考查了实数的运算,解答本题关键是掌握零指数幂的运算法则,难度一般.3、D【分析】根据平行四边形的性质,得到AO=6,利用勾股定理求出BO=10,然后求出BD的长度即可.【题目详解】解:∵ABCD是平行四边形,∴,,∵,,∴△ABO是直角三角形,∴,∴;故选:D.【题目点拨】本题考查了平行四边形的性质,以及勾股定理,解题的关键是熟练掌握平行四边形的性质,正确求出BO的长度.4、D【分析】由作图过程可得DN是AB的垂直平分线,AD=BD=6,再根据直角三角形10度角所对直角边等于斜边一半即可求解.【题目详解】由作图过程可知:DN是AB的垂直平分线,∴AD=BD=6∵∠B=10°∴∠DAB=10°∴∠C=90°,∴∠CAB=60°∴∠CAD=10°∴CD=AD=1.故选:D.【题目点拨】本题考查了作图-基本作图、线段垂直平分线的性质、含10度角的直角三角形,解决本题的关键是掌握线段垂直平分线的性质.5、A【分析】连接AA′,根据现有条件可推出△A′B′C≌△AA′C,连接AB′交A′C于点E,易证△A′B′E≌△A′AE,可得点A关于A′C对称的点是B′,可得当点P与点C重合时,AP+PB取最小值,即可求得答案.【题目详解】解:如图,连接AA′,由对称知△ABC,△A′B′C都是等边三角形,∴∠ACB=∠A′CB′=60°,∴∠A′CA=60°,由题意得△ABC≌△A′B′C,∴AC=A′C,∴△ACA′是等边三角形,∴△A′B′C≌△AA′C,连接AB′交A′C于点E,易证△A′B′E≌△A′AE,∴∠A′EB′=∠A′EA=90°,B′E=AE,∴点A关于A′C对称的点是B′,∴当点P与点C重合时,AP+PB取最小值,此时AP+PB=AC+BC=2+2=4,故选:A.【题目点拨】本题考查了轴对称——最短路线问题,等边三角形的判定和性质,全等三角形的判定和性质,掌握知识点是解题关键.6、C【解题分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【题目详解】∵正方形PQED的面积等于1,∴PQ2=1.∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣1=2,则正方形QMNR的面积为2.故选C.【题目点拨】本题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是解答本题的关键.7、B【分析】利用最简二次根式定义判断即可.【题目详解】解:A、,故不是最简二次根式,本选项错误;B、是最简二次根式,本选项正确;C、,故不是最简二次根式,本选项错误;D.,故不是最简二次根式,本选项错误.故选:B.【题目点拨】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.8、D【分析】利用平行线的性质,等腰三角形的性质和三角形内角和定理逐一对选项进行验证,看能否利用已知条件推导出来即可.【题目详解】∵,∵平分∵,故C选项正确;,故B选项正确;∵,故A选项正确;而D选项推不出来故选:D.【题目点拨】本题主要考查平行线的性质,等腰三角形的性质和三角形内角和定理,掌握平行线的性质,等腰三角形的性质和三角形内角和定理是解题的关键.9、A【分析】直接利用多边形内角和定理即可求解.【题目详解】解:设这个多边形的边数为n,则(n-2)×180°=n解得:n=7故选:A【题目点拨】本题主要考查多边形内角和定理,关键要掌握多边形内角和定理:n边形的内角和是(n-2)×180°(n≥3,且n为整数).10、B【解题分析】试题分析:A、这组数据的平均数是:(1+2+4+3+5)÷5=3,故本选项正确;B、把这组数据从小到大排列:1,2,3,4,5,则中位数是3,故本选项错误;C、这组数据的极差是:5-1=4,故本选项正确;D、这组数据的方差是2,故本选项正确;故选B.考点:方差;算术平均数;中位数;极差.11、C【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【题目详解】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°
故这个三角形是直角三角形.
故选:C.【题目点拨】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.12、B【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【题目详解】近似数0.13是精确到百分位,
故选B.【题目点拨】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.二、填空题(每题4分,共24分)13、1【解题分析】解:由题意可得:,①-②得:4m+2n=6,故2m+n=1.故答案为1.14、-1【解题分析】根据立方根的定义进行求解即可得.【题目详解】∵(﹣1)3=﹣8,∴﹣8的立方根是﹣1,故答案为﹣1.【题目点拨】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.15、【分析】根据二次根式的性质(被开方数大于等于0)解答.【题目详解】解:根据题意得:,解得:.故答案为:.【题目点拨】本题考查了二次根式有意义的条件,注意二次根式的被开方数是非负数.16、【分析】根据三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,即可得出结论.【题目详解】解:∵一个三角形三边长分别是4,6,,∴6-4<<6+4解得:2<<10故答案为:.【题目点拨】此题考查的是根据三角形的两边长,求第三边的取值范围,掌握三角形的三边关系是解决此题的关键.17、【分析】设B′C′与AB相交于点D,根据等腰直角三角形的性质可得∠BAC=45°,根据旋转角可得∠CAC′=15°,然后求出∠C′AD=30°,根据30°角所对的直角边等于斜边的一半可得AD=2C′D,然后利用勾股定理列式求出C′D的长度,再根据三角形的面积公式列式进行计算即可得解.【题目详解】设B′C′与AB相交于点D,如图,在等腰直角△ABC中,∠BAC=45°,∵旋转角为15°,∴∠CAC′=15°,∴∠C′AD=∠BAC-∠CAC′=45°-15°=30°,∴AD=2C′D,在Rt△AC′D中,根据勾股定理,AC′2+C′D2=AD2,即12+C′D2=4C′D2,解得C′D=,∴重叠部分的面积=.故答案为:.【题目点拨】本题考查了旋转的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟练掌握旋转的性质是解题的关键.18、1【分析】根据折线统计图给出的数据进行相减即可.【题目详解】解:由折线统计图知,5月份用的水量是6吨,1月份用的水量是1吨,则5月份的用水量比1月份的用水量多1吨;故答案为1.【题目点拨】本题主要考查折线统计图,解题的关键是根据折线统计图得出具体的数据.三、解答题(共78分)19、(1)甲组平均分6.7,乙组中位数7.5;(2)甲;(3)乙组的平均分高于甲组;乙组的中位数高于甲组,所以乙组的成绩要好于甲组.(答案不唯一)【分析】(1)先根据条形统计图写出甲乙两组的成绩,然后分别计算甲的平均数,乙的中位数;
(2)比较两组的中位数进行判断;
(3)通过乙组的平均数、中位数进行说明.【题目详解】解:(1)甲组:3,6,6,6,6,6,7,8,9,10,甲组平均数;
乙组:5,5,6,7,7,8,8,8,8,9,乙组中位数;(2)因为甲组的中位数为6,乙组的中位数是7.5,所以7分在甲组排名属中游略偏上,故小明是甲组的学生;(3)两条支持乙组同学观点的理由:①乙组的平均数高于甲组;②乙组的中位数高于甲组,所以乙组的成绩要好于甲组.【题目点拨】本题考查了条形统计图:从条形图可以很容易看出数据的大小,便于比较.也考查了中位数和平均数.20、(1)见解析;(2)见解析.【分析】(1)直接利用HL即可证明;(2)根据全等三角形的性质得出,然后通过等量代换得出,即可证明结论.【题目详解】(1),,,在和中,,.(2)由(1)知.,,,∴.【题目点拨】本题主要考查全等三角形的判定及性质,掌握全等三角形的判定及性质是解题的关键.21、(1)10°;(1)证明见解析;(3)EF1+BF1=1AC1.理由见解析.【分析】(1)根据等腰直角三角形的旋转得出∠ABE=∠AEB,求出∠BAE,根据三角形内角和定理求出即可;(1)根据等腰三角形的性质得出∠BAF=∠CAF,根据SAS推出△BAF≌△CAF,根据全等得出∠ABF=∠ACF,即可得出答案;(3)根据全等得出BF=CF,求出∠CFG=∠EAG=90°,根据勾股定理求出EF1+BF1=EF1+CF1=EC1,EC1=AC1+AE1=1AC1,即可得出答案.【题目详解】(1)∵AB=AC,△ACE是等腰直角三角形,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAC=50°,∠EAC=90°,∴∠BAE=50°+90°=140°,∴∠AEB=(180°-140°)÷1=10°;(1)∵AB=AC,D是BC的中点,∴∠BAF=∠CAF.在△BAF和△CAF中,∴△BAF≌△CAF(SAS),∴∠ABF=∠ACF,∵∠ABE=∠AEB,∴∠AEB=∠ACF;(3)∵△BAF≌△CAF,∴BF=CF,∵∠AEB=∠ACF,∠AGE=∠FGC,∴∠CFG=∠EAG=90°,∴EF1+BF1=EF1+CF1=EC1,∵△ACE是等腰直角三角形,∴∠CAE=90°,AC=AE,∴EC1=AC1+AE1=1AC1,即EF1+BF1=1AC1.【题目点拨】本题考查了勾股定理,全等三角形的性质和判定,等腰直角三角形的应用,能综合运用性质进行推理是解此题的关键,题目比较好,有一定的难度.22、(1);(2);(3)不变化,.【分析】(1)先将分式方程去分母化为整式方程,再求解整式方程,最后检验解是原分式方程的解,即得;(2)先证明,进而可得出,再利用三角形内角和推出,最后利用邻补角的性质即得;(3)先证明,进而得出以及,再根据以上结论以及邻补角对顶角的性质推出,最后根据所对直角边是斜边的一半推出,即得为定值.【题目详解】(1)∵∴方程两边同时乘以得:解得:检验:当时,∴原分式方程的解为∴点的坐标为.(2)∵、都为等边三角形∴,,∴∴在与中∴∴∵在中,∴∵在中,∴∴∴∵∴.(3)不变化,理由如下:∵、都为等边三角形∴,,∴∴在与中∴∴,∴∵∴∴∵∴∴在中,∴∵A点坐标为∴∴∴为定值9,不变化.【题目点拨】本题考查等边三角形的性质、全等三角形的性质、含的直角三角形的性质和“手拉手模型”,两个共顶点的顶角相等的等腰三角形构成的图形视作“手拉手模型”,熟练掌握“手拉手模型”及“手拉手模型”的常用结论是解题关键.23、(1)11;(2)∠DEF=(∠C-∠B),证明见解析;(3)∠DEF=(∠C-∠B),证明见解析【分析】(1)依据角平分线的定义以及垂线的定义,即可得到∠CAD=∠BAC,∠CAE=90°-∠C,进而得出∠DAE=(∠C-∠B),由此即可解决问题.
(2)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C-∠B).
(3)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C-∠B)不变.【题目详解】(1)∵AD平分∠BAC,
∴∠CAD=∠BAC,
∵AE⊥BC,
∴∠CAE=90°-∠C,
∴∠DAE=∠CAD-∠CAE
=∠BAC-(90°-∠C)
=(180°-∠B-∠C)-(90°-∠C)
=∠C-∠B
=(∠C-∠B),
∵∠B=52°,∠C=74°,
∴∠DAE=(74°-52°)=11°;
(2)结论:∠DEF=(∠C-∠B).
理由:如图2,过A作AG⊥BC于G,
∵EF⊥BC,
∴AG∥EF,
∴∠DAG=∠DEF,
由(1)可得,∠DAG=(∠C-∠B),
∴∠DEF=(∠C-∠B);
(3)仍成立.
如图3,过A作AG⊥BC于G,
∵EF⊥BC,
∴AG∥EF,
∴∠DAG=∠DEF,
由(1)可得,∠DAG=(∠C-∠B),
∴∠DEF=(∠C-∠B),
故答案为∠DEF=(∠C-∠B).【题目点拨】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,熟记各性质并准确识图是解题的关键.24、-x+y【分析】根据整式的混合运算法则计算即可.【题目详解】解:原式.【题目点拨】本题考查了整式的混合运算,熟练掌握运算法则及乘法公式是解题关键.25、(1)见解析;(2)CF、BE【分析】(1)根据等腰三角形的对称性得到△ABD的面积和△ACD的面积相等,再根据面积公式求出DE=DF.(2)根据题意得出△ABC是等边三角形,即可得出Rt△DEB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苗医技能型人才培养中的师承与技术传承机制建设
- 政企合作对乡村职业教育发展的实际影响
- 幼小衔接协同育人机制的策略及实施路径
- 推进绿色创新的策略及实施路径
- 区域旅游生态位的动态评估与竞合模式
- 企业财务分析对经营决策的作用与影响
- 深圳市光明区区属公办中小学招聘教师笔试真题2024
- 内蒙古亿利化学工业有限公司招聘笔试真题2024
- 2024年木里县选聘社区工作者真题
- 海南省农村义务教育阶段学校特设岗位教师招聘笔试真题2024
- 2025年上半年广东汕尾市城区招聘政府聘员69人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年不动产登记代理人《地籍调查》考试题库大全(含真题、典型题)
- 2025版MCN公司艺人合作签约合同范本3篇
- 财务服务协议书
- YC/Z 623-2024烟草商业企业卷烟物流应急作业指南
- GB/T 45098-2024营运纯电动汽车换电服务技术要求
- 物联网安全风险与防护
- 2025年中考英语话题作文范文20篇
- 包装产品设计部门规划
- 2024年中国一次性内裤市场调查研究报告
- 公交车驾驶员安全培训
评论
0/150
提交评论