




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
我们首先引入的计算概率的数学模型,是在概率论的发展过程中最早出现的研究对象,通常称为古典概型一、古典概型
假定某个试验有有限个可能的结果
假定从该试验的条件及实施方法上去分析,我们找不到任何理由认为其中某一结果例如ei,比任一其它结果,例如ej,更有优势,则我们只好认为所有结果在试验中有同等可能的出现机会,即1/N的出现机会.e1,e2,…,eN
,常常把这样的试验结果称为“等可能的”.e1,e2,…,eN试验结果你认为哪个结果出现的可能性大?23479108615
例如,一个袋子中装有10个大小、形状完全相同的球.将球编号为1-10.把球搅匀,蒙上眼睛,从中任取一球.因为抽取时这些球是完全平等的,我们没有理由认为10个球中的某一个会比另一个更容易取得.也就是说,10个球中的任一个被取出的机会是相等的,均为1/10.1324567891010个球中的任一个被取出的机会都是1/1023479108615我们用i表示取到i号球,i=1,2,…,10.称这样一类随机试验为古典概型.34791086152且每个样本点(或者说基本事件)出现的可能性相同.S={1,2,…,10},则该试验的样本空间如i=2
称这种试验为有穷等可能随机试验
或古典概型.定义1
若随机试验满足下述两个条件:
(1)它的样本空间只有有限多个样本点;
(2)每个样本点出现的可能性相同.
二、古典概型中事件概率的计算记A={摸到2号球}
P(A)=?
P(A)=1/10记B={摸到红球}
P(B)=?
P(B)=6/10223479108615132456这里实际上是从“比例”转化为“概率”记B={摸到红球}
P(B)=6/10静态动态当我们要求“摸到红球”的概率时,只要找出它在静态时相应的比例.23479108615
这样就把求概率问题转化为计数问题.定义2
设试验E是古典概型,其样本空间S由n个样本点组成,事件A由k个样本点组成.则定义事件A的概率为:称此概率为古典概率.这种确定概率的方法称为古典方法.
A包含的样本点数
P(A)=k/n=
S中的样本点总数排列组合是计算古典概率的重要工具.请回答:1、怎样的一类随机试验称为古典概型?2、如何计算古典概型中事件的概率?为什么这样计算?下面我们就来介绍如何计算古典概率.基本计数原理这里我们先简要复习一下计算古典概率所用到的1.加法原理设完成一件事有m种方式,第一种方式有n1种方法,第二种方式有n2种方法,…;第m种方式有nm种方法,无论通过哪种方法都可以完成这件事,则完成这件事总共有n1+n2+…+nm
种方法.例如,某人要从甲地到乙地去,甲地乙地可以乘火车,也可以乘轮船.火车有两班轮船有三班乘坐不同班次的火车和轮船,共有几种方法?3
+2
种方法回答是基本计数原理则完成这件事共有种不同的方法.2.乘法原理设完成一件事有m个步骤,第一个步骤有n1种方法,第二个步骤有n2种方法,…;第m个步骤有nm种方法,必须通过每一步骤,才算完成这件事,例如,若一个男人有三顶帽子和两件背心,问他可以有多少种打扮?可以有种打扮加法原理和乘法原理是两个很重要计数原理,它们不但可以直接解决不少具体问题,同时也是推导下面常用排列组合公式的基础.三、排列、组合的几个简单公式排列和组合的区别:顺序不同是不同的排列3把不同的钥匙的6种排列而组合不管顺序从3个元素取出2个的排列总数有6种从3个元素取出2个的组合总数有3种1、排列:
从n个不同元素取k个(1kn)的不同排列总数为:k=n时称全排列排列、组合的几个简单公式ABDC例如:n=4,k=3第1次选取第2次选取第3次选取BDCBCDBDC……从n个不同元素取k个(允许重复)(1kn)的不同排列总数为:例如:从装有4张卡片的盒中有放回地摸取3张3241n=4,k=3123第1张4123第2张4123第3张4共有4.4.4=43种可能取法2、组合:从n个不同元素取k个(1kn)的不同组合总数为:常记作,称为组合系数。你能证明吗?组合系数又常称为二项式系数,因为它出现在下面的二项式展开的公式中:3、组合系数与二项式展开的关系令
a=-1,b=1利用该公式,可得到许多有用的组合公式:令
a=b=1,得由有比较两边
xk
的系数,可得
运用二项式展开4、n个不同元素分为k组,各组元素数目分别为r1,r2,…,rk的分法总数为r1个元素r2个元素rk个元素…n个元素因为请回答:对排列组合,我们介绍了几个计算公式?排列:选排列,全排列,下面我们就用这些公式来计算.分组分配.
组合;允许重复的排列;四、古典概率计算举例例1
把C、C、E、E、I、N、S七个字母分别写在七张同样的卡片上,并且将卡片放入同一盒中,现从盒中任意一张一张地将卡片取出,并将其按取到的顺序排成一列,假设排列结果恰好拼成一个英文单词:CISNCEE问:在多大程度上认为这样的结果是奇怪的,甚至怀疑是一种魔术?拼成英文单词SCIENCE
的情况数为故该结果出现的概率为:这个概率很小,这里算出的概率有如下的实际意义:如果多次重复这一抽卡试验,则我们所关心的事件在1260次试验中大约出现1次.解:七个字母的排列总数为7!这样小概率的事件在一次抽卡的试验中就发生了,人们有比较大的把握怀疑这是魔术.具体地说,可以99.9%的把握怀疑这是魔术.解:=0.3024允许重复的排列问:错在何处?例2
某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件设计师考试快速掌握试题及答案
- 操作系统基础知识试题及答案
- 高考数学实践2024年试题及答案
- 网络服务的级别试题及答案分析
- 企业竞争策略与风险分析试题及答案
- 2025年软考设计师备考情绪管理试题及答案
- 2025农民土地流转合同范本
- 2025企业租赁合同标准范文
- 棉业公司范本章程
- 法学概论研究的国际视野与试题与答案
- 《平凡的世界》中孙少平人物形象分析8500字(论文)
- 《结构式家庭疗法提升“丧偶式育儿”家庭亲密度的个案研究》
- 化学实验室废物处理管理制度
- 2024年六西格玛黄带认证考试练习题库(含答案)
- 第三章-足球-基本技术 足球运球绕杆 教学设计 人教版初中体育与健康七年级全一册
- 2024年同等学力英语考试真题及详解
- 会展活动场地布置与搭建技术规范手册
- “非遗”之首-昆曲经典艺术欣赏智慧树知到期末考试答案章节答案2024年北京大学
- 《药事管理学》习题库
- 水文地质技术员技能鉴定理论考试题库-下(多选、判断题)
- DZ∕T 0054-2014 定向钻探技术规程(正式版)
评论
0/150
提交评论