2023-2024学年福建省泉州永春华侨中学高二数学第一学期期末学业水平测试试题含解析_第1页
2023-2024学年福建省泉州永春华侨中学高二数学第一学期期末学业水平测试试题含解析_第2页
2023-2024学年福建省泉州永春华侨中学高二数学第一学期期末学业水平测试试题含解析_第3页
2023-2024学年福建省泉州永春华侨中学高二数学第一学期期末学业水平测试试题含解析_第4页
2023-2024学年福建省泉州永春华侨中学高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年福建省泉州永春华侨中学高二数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是抛物线的焦点,是抛物线的准线,点,连接交抛物线于点,,则的面积为()A.4 B.9C. D.2.若直线与圆只有一个公共点,则m的值为()A. B.C. D.3.已知函数与,则它们的图象交点个数为()A.0 B.1C.2 D.不确定4.直线的倾斜角为()A.0 B.C. D.5.中秋节吃月饼是我国的传统习俗,若一盘中共有两种月饼,其中5块五仁月饼、6块枣泥月饼,现从盘中任取3块,在取到的都是同种月饼的条件下,都是五仁月饼的概率是()A B.C. D.6.已知{an}是以10为首项,-3为公差的等差数列,则当{an}的前n项和Sn,取得最大值时,n=()A.3 B.4C.5 D.67.双曲线:的左、右焦点分别为、,过的直线与y轴交于点A、与双曲线右支交于点B,若为等边三角形,则双曲线C的离心率为()A. B.C.2 D.8.在中,角、、的对边分别是、、,若.则的大小为()A. B.C. D.9.过两点和的直线的斜率为()A. B.C. D.10.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含11.已知为等差数列,为公差,若成等比数列,且,则数列的前项和为()A. B.C. D.12.若两条直线与互相垂直,则的值为()A.4 B.-4C.1 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.直线被圆所截得的弦中,最短弦所在直线的一般方程是__________14.已知数列是公差不为0的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求.15.已知、是空间内两个单位向量,且,如果空间向量满足,且,,则对于任意的实数、,的最小值为______16.已知数列是等差数列,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列,若_________________(1)求数列的通项公式;(2)求数列的前项和从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解①;②,,;③,点,在斜率是2的直线上18.(12分)已知函数.(1)当时,求函数的极大值与极小值;(2)若函数在上的最大值是最小值的3倍,求a的值.19.(12分)在如图所示的几何体中,四边形ABCD为正方形,平面ABCD,,,.(1)求证:平面PAD;(2)求直线AB与平面PCE所成角的正弦值;20.(12分)已知点,直线,圆.(1)若连接点与圆心的直线与直线垂直,求实数的值;(2)若直线与圆相交于两点,且弦的长为,求实数的值21.(12分)在等差数列中,(1)求数列的通项公式;(2)设数列是首项为1,公比为2的等比数列,求数列的前项和.22.(10分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意求得抛物线的方程为和焦点为,由,得到为的中点,得到,代入抛物线方程,求得,进而求得的面积.【详解】由直线是抛物线的准线,可得,即,所以抛物线的方程为,其焦点为,因为,可得可得三点共线,且为的中点,又因为,,所以,将点代入抛物线,可得,所以的面积为.故选:D.2、D【解析】利用圆心到直线的距离等于半径列方程,化简求得的值.【详解】圆的圆心为,半径为,直线与圆只有一个公共点,所以直线与圆相切,所以.故选:D3、B【解析】令,判断的单调性并计算的极值,根据极值与0的大小关系判断的零点个数,得出答案.【详解】令,则,由,得,∴当时,,当时,.∴当时,取得最小值,∴只有一个零点,即与的图象只有1个交点.故选:B.4、D【解析】根据斜率与倾斜角的关系求解即可.【详解】由题的斜率,故倾斜角的正切值为,又,故.故选:D.5、C【解析】分别求出取到3块月饼都是同种月饼和取到3块月饼都是五仁月饼的种数,再根据概率公式即可得解.【详解】解:由题意可得,取到3块月饼都是同种月饼有种情况,取到3块月饼都是五仁月饼有种情况,所以在取到的都是同种月饼的条件下,都是五仁月饼的概率是.故选:C.6、B【解析】由题可得当时,,当时,,即得.【详解】∵{an}是以10为首项,-3为公差的等差数列,∴,故当时,,当时,,故时,取得最大值故选:B.7、B【解析】由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,从而即可求解.【详解】解:由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以双曲线C的离心率,故选:B.8、B【解析】利用余弦定理结合角的范围可求得角的值,再利用三角形的内角和定理可求得的值.【详解】因为,则,则,由余弦定理可得,因为,则,故.故选:B.9、D【解析】应用两点式求直线斜率即可.【详解】由已知坐标,直线的斜率为.故选:D10、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.11、C【解析】先利用已知条件得到,解出公差,得到通项公式,再代入数列,利用裂项相消法求和即可.【详解】因为成等比数列,,故,即,故,解得或(舍去),故,即,故的前项和为:.故选:C.【点睛】方法点睛:数列求和的方法:(1)倒序相加法:如果一个数列的前项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.12、A【解析】根据两直线垂直的充要条件知:,即可求的值.【详解】由两直线垂直,可知:,即.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出直线所过的定点,当该定点为弦的中点时弦长最短,利用点斜式求出直线方程,整理成一般式即可.【详解】即,令,解得即直线过定点圆的圆心为,半径为,最短弦所在直线的方程为整理得最短弦所在直线的一般方程是故答案为:.14、(1);(2).【解析】(1)根据,且,,成等比数列,利用等比中项由,求得公差即可.(2)由(1)得到,再利用裂项相消法求解.【详解】(1)设数列的公差为d,因为,且,,成等比数列,所以,即,解得或(舍去),所以数列的通项公式;(2)由(1)知:,所以.【点睛】方法点睛:求数列的前n项和的方法(1)公式法:①等差数列的前n项和公式,②等比数列的前n项和公式;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n项和用错位相减法求解.(6)并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解15、【解析】根据已知可设,,,根据已知条件求出、、的值,将向量用坐标加以表示,利用空间向量的模长公式可求得的最小值.【详解】因为、是空间内两个单位向量,且,所以,,因为,则,不妨设,,设,则,,解得,则,因为,可得,则,所以,,当且仅当时,即当时,等号成立,因此,对于任意的实数、,的最小值为.故答案为:.16、8【解析】利用计算可得答案.【详解】设等差数列的公差为,故答案为:8.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、答案见解析.【解析】(1)若选①,根据通项公式与前项和的关系求解通项公式即可;若选②,根据可得数列为等差数列,利用基本量法求解通项公式即可;若选③,根据两点间的斜率公式可得,可得数列为等差数列进而求得通项公式;(2)利用裂项相消求和即可【详解】解:(1)若选①,由,所以当,,两式相减可得:,而在中,令可得:,符合上式,故若选②,由(,)可得:数列为等差数列,又因为,,所以,即,所以若选③,由点,在斜率是2的直线上得:,即,所以数列为等差数列且(2)由(1)知:,所以18、(1)的极大值为0,的极小值为(2)2【解析】(1)先求导可得,再利用导函数判断的单调性,进而求解;(2)由(1)可得在上的最小值为,由,,可得的最大值为,进而根据求解即可.【详解】解:(1)当时,,所以,令,则或,则当和时,;当时,,则在和上单调递增,在上单调递减,所以极大值为;的极小值为.(2)由题,,由(1)可得在上单调递减,在上单调递增,所以的最小值即为的极小值;因为,,所以,因为,则,所以.【点睛】本题考查利用导函数求函数的极值,考查利用导函数求函数的最值,考查运算能力.19、(1)证明见详解(2)【解析】(1)将线面平行转化为面面平行,由已知易证;(2)延长相交与点F,利用等体积法求点A到平面PCE,然后由可得.【小问1详解】四边形ABCD为正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小问2详解】延长相交与点F,因为,所以分别为的中点.记点到平面PCF为d,直线AB与平面PCE所成角为,则.易知,,,,因为平面ABCD,所以,所以因为,所以由得:即,得所以22.20、(1)3(2)实数的值为和【解析】(1)由直线垂直,斜率乘积为可得值;(2)求出加以到直线的距离,由勾股定理求弦长,从而可得参数值【小问1详解】圆,,,,,,【小问2详解】圆半径为,设圆心到直线的距离为,则又由点到直线距离公式得:化简得:,解得:或所以实数的值为和.21、(1)(2)【解析】(1)根据等差数列条件列方程,即可求通项公式;(2)先由等比数列通项公式求出,解得,分组求和即可.【小问1详解】设等差数列的公差为,则,∴,由,∴,∴数列的通项公式为.【小问2详解】∵数列是首项为1,公比为2的等比数列,∴,即,∴,∴.22、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论