2023-2024学年福州三校联盟数学高二上期末学业水平测试模拟试题含解析_第1页
2023-2024学年福州三校联盟数学高二上期末学业水平测试模拟试题含解析_第2页
2023-2024学年福州三校联盟数学高二上期末学业水平测试模拟试题含解析_第3页
2023-2024学年福州三校联盟数学高二上期末学业水平测试模拟试题含解析_第4页
2023-2024学年福州三校联盟数学高二上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年福州三校联盟数学高二上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则的虚部为()A. B.C. D.2.如图,棱长为1的正方体中,为线段上的动点,则下列结论错误的是A.B.平面平面C.的最大值为D.的最小值为3.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A. B.C. D.4.设,则有()A. B.C. D.5.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.326.已知函数f(x)的图象如图所示,则导函数f(x)的图象可能是()A. B.C. D.7.已知数列满足,,.设,若对于,都有恒成立,则最大值为A.3 B.4C.7 D.98.命题“,”否定是()A., B.,C., D.,9.不等式的解集为()A. B.C. D.10.已知数列满足,且,,则()A. B.C. D.11.设a,b,c非零实数,且,则()A. B.C. D.12.下面四个条件中,使成立的充分而不必要的条件是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的程序框图,则输出的S=__.14.已知,则曲线在点处的切线方程是______.15.已知函数,则_________16.已知双曲线,则圆的圆心C到双曲线渐近线的距离为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2020年8月,总书记对制止餐饮浪费行为作出重要指示,要求进一步加强宣传教育,切实培养节约习惯,在全社会营造浪费可耻、节约光荣的氛围.为贯彻总书记指示,大庆市某学校食堂从学生中招募志愿者,协助食堂宣传节约粮食的相关活动.现已有高一63人、高二42人,高三21人报名参加志愿活动.根据活动安排,拟采用分层抽样的方法,从已报名的志愿者中抽取12名志愿者,参加为期20天的第一期志愿活动(1)第一期志愿活动需从高一、高二、高三报名的学生中各抽取多少人?(2)现在要从第一期志愿者中的高二、高三学生中抽取2人粘贴宣传标语,求抽出两人都是高二学生的概率是多少?(3)食堂每天约有400人就餐,其中一组志愿者的任务是记录学生每天倒掉的剩菜剩饭的重量(单位:公斤),以10天为单位来衡量宣传节约粮食的效果.在一个周期内,这组志愿者记录的数据如下:前10天剩菜剩饭的重量为:后天剩菜剩饭的重量为:借助统计中的图、表、数字特征等知识,分析宣传节约粮食活动的效果(选择一种方法进行说明即可)18.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围19.(12分)已知函数(1)若函数的图象在点处的切线与平行,求b的值;(2)在(1)的条件下证明:20.(12分)(1)叙述正弦定理;(2)在△中,应用正弦定理判断“”是“”成立的什么条件,并加以证明.21.(12分)已知直三棱柱中,,,E、F分别是、的中点,D为棱上的点.(1)证明:;(2)当时,求直线BF与平面DEF所成角的正弦值.22.(10分)如图,正三棱柱中,D是的中点,.(1)求点C到平面的距离;(2)试判断与平面的位置关系,并证明你的结论.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A2、C【解析】∵,,∴面,面,∴,A正确;∵平面即为平面,平面即为平面,且平面,∴平面平面,∴平面平面,∴B正确;当时,为钝角,∴C错;将面与面沿展成平面图形,线段即为的最小值,在中,,利用余弦定理解三角形得,即,∴D正确,故选C考点:立体几何中的动态问题【思路点睛】立体几何问题的求解策略是通过降维,转化为平面几何问题,具体方法表现为:

求空间角、距离,归到三角形中求解;2.对于球的内接外切问题,作适当的截面,既要能反映出位置关系,又要反映出数量关系;求曲面上两点之间的最短距离,通过化曲为直转化为同一平面上两点间的距离3、A【解析】由,可得进一步求出,由此得到,则该双曲线的方程可求【详解】,即,则.即,则该双曲线的方程是:故选:A【点睛】方法点睛:求圆锥曲线的方程,常用待定系数法,先定式(根据已知确定焦点所在的坐标轴,设出曲线的方程),再定式(根据已知建立方程组解方程组得解).4、A【解析】利用作差法计算与比较大小即可求解.【详解】因为,,所以,所以,故选:A.5、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C6、D【解析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且原函数在处与轴相切,故可知,导函数图象为D故选:D7、A【解析】整理数列的通项公式有:,结合可得数列是首项为,公比为的等比数列,则,,原问题即:恒成立,当时,,即>3,综上可得:的最大值为3.本题选择A选项点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项8、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.9、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.10、A【解析】由已知两个不等式,利用“两边夹”思想求得,然后利用累加法可求得【详解】∵,∴,∴,又,∴,即,∴故选:A【点睛】本题考查数列的递推式,由递推式的特征,采用累加法求得数列的项.解题关键是利用“两边夹”思想求解11、C【解析】对于A、B、D:取特殊值否定结论;对于C:利用作差法证明.【详解】对于A:取符合已知条件,但是不成立.故A错误;对于B:取符合已知条件,但是,所以不成立.故B错误;对于C:因为,所以.故C正确;对于D:取符合已知条件,但是,所以不成立.故D错误;故选:C.12、A【解析】由,但无法得出,A满足;由、均无法得出,不满足“充分”;由,不满足“不必要”.考点:不等式性质、充分必要性.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,即可求解得答案【详解】解:S=S+=S+,第一次循环,S=1+1﹣,k=2;第二次循环,S=1+1﹣,k=3;第三次循环,S=1+1,k=4;第四次循环,S=1,k=5;第五次循环,S=1+1,k=6,循环停止,输出;故答案为:.14、【解析】求导,得到,写出切线方程.【详解】因为,所以,则,所以曲线在点处的切线方程是,即,故答案为:15、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】,,因此,.故答案为:.16、2【解析】求出圆心和双曲线的渐近线方程,即得解.【详解】解:由题得圆的圆心为,双曲线的渐近线方程为,即.所以圆心到双曲线渐近线的距离为.故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)6,4,2;(2);(3)答案见解析.【解析】(1)先求出抽样比,然后每次按比例抽取即可求出;(2)先求出抽出两人的基本事件,再求出两人都是高二学生包含的基本事件,即可求出概率;(3)可求出平均值进行判断;也可画出茎叶图观察判断.【详解】解:(1)报名的学生共有126人,抽取的比例为,所以高一抽取人,高二抽取人,高三抽取人.(2)记高二四个学生为1,2,3,4,高三两个学生为5,6,抽出两人表示为(x,y),则抽出两人的基本事件为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个基本事件,其中高二学生都在同一组包含(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件.记抽出两人都是高二学生为事件,则,所以高二学生都在同一组的概率是.(3)法一:(数字特征)前10天的平均值为23.5,后10天的平均值为20.5,因为20.5<23.5,所以宣传节约粮食活动的效果很好.法二:(茎叶图)画出茎叶图因为前10天的重量集中在23、24附近,而后10天的重量集中在20附近,所以节约宣传后剩饭剩菜明显减少,宣传效果很好.18、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.19、(1);(2)证明见解析.【解析】(1)由题意可得,从而可求出,(2)先构造函数,利用导数可求得对任意恒成立,对任意恒成立,从而将问题转化为只需证对任意恒成立,再次构造函数,利用导数求出其最大值小于等于即可【详解】(1)解:∵函数的图象在点处的切线与平行,∴,解得;证明:(2)由(1)得即对任意恒成立,令,则,∵当时,,∴函数在上单调递增,∵,∴对任意恒成立,即对任意恒成立,∴只需证对任意恒成立即可,即只需证对任意恒成立,令,则,由单调递减,且知,函数在上单调递增,在上单调递减,∴,∴得证,故不等式对任意恒成立20、(1)正弦定理见解析;(2)充要条件,证明见解析【解析】(1)用语言描述正弦定理,并用公式表达正弦定理(2)利用“大角对大边”的性质,并根据正弦定理进行边角互化即可【详解】(1)正弦定理:在任意一个三角形中,各边和它所对角的正弦值之比相等且等于这个三角形外接圆的直径,即.(2)是充要条件.证明如下:充分性:又故有:必要性:又综上,是的充要条件21、(1)证明见解析(2)【解析】(1)由题意建立如图所示的空间直角坐标系,利用空间向量证明即可,(2)求出平面DEF的法向量,利用空间向量求解【小问1详解】证明:因为三棱柱是直三棱柱,且,所以两两垂直,所以以为原点,以所在的直线分别为轴建立空间直角坐标系,则,,设,则,所以,所以,所以【小问2详解】因为,所以,所以,设平面一个法向量为,则,令,则,设直线BF与平面DEF所成角为,则,所以直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论