基于低秩稀疏结构分解的纺织品瑕疵检测论文设计_第1页
基于低秩稀疏结构分解的纺织品瑕疵检测论文设计_第2页
基于低秩稀疏结构分解的纺织品瑕疵检测论文设计_第3页
基于低秩稀疏结构分解的纺织品瑕疵检测论文设计_第4页
基于低秩稀疏结构分解的纺织品瑕疵检测论文设计_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘要现有的纺织品瑕疵检测算法多采用传统的模式识别方法,如统计法、频谱法和训练法等。近些年来,低秩稀疏结构分解模型在显著性检测等领域得到了广泛的应用。低秩稀疏矩阵结构分解模型将待检测的特征图像矩阵分解为低秩矩阵和稀疏矩阵两个部分,其中低秩矩阵用来表示背景,稀疏矩阵用来表示稀疏矩阵。而纺织品在视觉上具有高度的冗余性,因此可以利用低秩稀疏结构分解来进行纺织品的瑕疵检测。本文以周期性纺织品为样本作为瑕疵检测的研究对象,采用低秩稀疏结构分解作为研究方法,所做的工作及研究成果如下:提出了一种基于模板校正与低秩分解的纺织品瑕疵检测方法。首先对原纺织品图像进行模板校正,以减轻图像拉伸、变形及光照对检测结果的影响;然后提出低秩校正分解模型,包含低秩项、稀疏项和校正项,采用交替方向法进行优化求解,将原特征矩阵分解为低秩矩阵和稀疏矩阵,其中低秩矩阵表示背景,稀疏矩阵表示瑕疵区域;最后利用最优阈值分割算法,对由稀疏矩阵产生的显著图进行阈值分割,得到二值化的检测结果。提出了一种基于权重低秩分解模型的纺织品瑕疵检测方法。采用块分割法获取瑕疵先验,瑕疵先验用于增加对大的瑕疵块的检测率。通过瑕疵先验来指导模型的分解,惩罚缺陷区域,降低算法的误检率,提高检测精度。提出了一种基于权重低秩分解与拉普拉斯正则项模型的纺织品瑕疵检测算法。在权重低秩分解模型的基础上加入拉普拉斯正则项,提高对细小瑕疵的检测精度,通过拉普拉斯正则项将具有相似像素的块共享相似的表示,不同的像素采用不同的表示方式,以此增加瑕疵与背景之间的距离。并且采用交替方向法对所提的凸优化模型进行优化求解,最后,采用自适应的阈值分割算法对由稀疏矩阵产生的显著图进行分割,定位出瑕疵区域。关键词:纺织品瑕疵检测;低秩分解;模板校正;拉普拉斯正则项1绪论1.1研究背景和意义在纺织工业中,纺织品的生产通常在针织机上进行ADDINZOTERO_ITEMCSL_CITATION{"citationID":"X2x21zmn","properties":{"formattedCitation":"\\super[1]\\nosupersub{}","plainCitation":"[1]","noteIndex":0},"citationItems":[{"id":215,"uris":["/users/local/xIMhsWAM/items/R7HS83TF"],"uri":["/users/local/xIMhsWAM/items/R7HS83TF"],"itemData":{"id":215,"type":"article-journal","container-title":"Optik","DOI":"10.1016/j.ijleo.2016.09.110","ISSN":"00304026","issue":"24","language":"en","page":"11960-11973","source":"Crossref","title":"Fabricdefectdetectionsystemsandmethods—Asystematicliteraturereview","volume":"127","author":[{"family":"Hanbay","given":"Kazım"},{"family":"Talu","given":"MuhammedFatih"},{"family":"Özgüven","given":"ÖmerFaruk"}],"issued":{"date-parts":[["2016",12]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[1]。因此,这个过程总会产生各种各样的瑕疵。研究表明,纺织品的瑕疵可以造成纺织品利润下降45%-65%ADDINZOTERO_ITEMCSL_CITATION{"citationID":"NsJCBLKu","properties":{"formattedCitation":"\\super[2]\\nosupersub{}","plainCitation":"[2]","noteIndex":0},"citationItems":[{"id":218,"uris":["/users/local/xIMhsWAM/items/YKWDZDBB"],"uri":["/users/local/xIMhsWAM/items/YKWDZDBB"],"itemData":{"id":218,"type":"article-journal","container-title":"Neurocomputing","DOI":"10.1016/j.neucom.2015.09.011","ISSN":"09252312","language":"en","page":"1386-1401","source":"Crossref","title":"Differentialevolution-basedoptimalGaborfiltermodelforfabricinspection","volume":"173","author":[{"family":"Tong","given":"Le"},{"family":"Wong","given":"W.K."},{"family":"Kwong","given":"C.K."}],"issued":{"date-parts":[["2016",1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[2]。因此,在纺织品生产过程中,对其进行纺织品的瑕疵检测是不可缺少的一步。但由于纺织品图像本身具有复杂多变的纹理以及各式各样的瑕疵类型,给瑕疵检测算法的研究带来了一定的挑战性。在目前的工业生产中,纺织品的瑕疵检测主要采用人工检测的方式,如图1-1所示。但是人工检测存在许多的缺点,如,误检率高,检测速度慢,成本高等。然而,纺织品的自动瑕疵检测能弥补上述的这些缺点ADDINZOTERO_ITEMCSL_CITATION{"citationID":"FKAtLEgL","properties":{"formattedCitation":"\\super[3]\\nosupersub{}","plainCitation":"[3]","noteIndex":0},"citationItems":[{"id":217,"uris":["/users/local/xIMhsWAM/items/32JYVAL9"],"uri":["/users/local/xIMhsWAM/items/32JYVAL9"],"itemData":{"id":217,"type":"article-journal","container-title":"IEEETransactionsonPatternAnalysisandMachineIntelligence","DOI":"10.1109/TPAMI.1982.4767309","ISSN":"0162-8828","issue":"6","page":"557-573","source":"Crossref","title":"AutomatedVisualInspection:ASurvey","title-short":"AutomatedVisualInspection","volume":"PAMI-4","author":[{"family":"Chin","given":"RolandT."},{"family":"Harlow","given":"CharlesA."}],"issued":{"date-parts":[["1982",11]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[3]。现如今,越来越多的纺织品企业采用了自动化瑕疵检测设备,检测速度可以达到每分钟120米,并且检测成功率一般在90%左右ADDINZOTERO_ITEMCSL_CITATION{"citationID":"M6QjD9Dp","properties":{"formattedCitation":"\\super[4]\\nosupersub{}","plainCitation":"[4]","noteIndex":0},"citationItems":[{"id":130,"uris":["/users/local/xIMhsWAM/items/VAQKQEI6"],"uri":["/users/local/xIMhsWAM/items/VAQKQEI6"],"itemData":{"id":130,"type":"article-journal","container-title":"IEEETransactionsonIndustryApplications","issue":"5","page":"1267-1276","title":"FabricdefectdetectionbyFourieranalysis","volume":"36","author":[{"family":"Chan","given":"ChiHo"},{"family":"Pang","given":"G.K.H."}],"issued":{"date-parts":[["2000"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[4]。对于各种各样的瑕疵类型,自动瑕疵检测系统都有统一的评价标准,避免了主观判断给检测带来的影响。近年来,随着低秩稀疏结构分解模型的快速发展,利用低秩稀疏结构分解模型进行显著性检测日渐成熟。低秩稀疏结构分解模型的原理是将图像的特征数据矩阵分解为低秩矩阵和稀疏矩阵,用低秩矩阵来表示背景,用稀疏矩阵来表示显著性区域。如利用低秩稀疏结构分解模型进行目标检测ADDINZOTERO_ITEMCSL_CITATION{"citationID":"a1vnsnot92p","properties":{"formattedCitation":"\\super[5,6]\\nosupersub{}","plainCitation":"[5,6]","noteIndex":0},"citationItems":[{"id":312,"uris":["/users/local/xIMhsWAM/items/P39KSXI5"],"uri":["/users/local/xIMhsWAM/items/P39KSXI5"],"itemData":{"id":312,"type":"article-journal","abstract":"Low-rankrecoverymodelshaveshownpotentialforsalientobjectdetection,whereamatrixisdecomposedintoalow-rankmatrixrepresentingimagebackgroundandasparsematrixidentifyingsalientobjects.Twodeficiencies,however,stillexist.First,previousworktypicallyassumestheelementsinthesparsematrixaremutuallyindependent,ignoringthespatialandpatternrelationsofimageregions.Second,whenthelow-rankandsparsematricesarerelativelycoherent,e.g.,whentherearesimilaritiesbetweenthesalientobjectsandbackgroundorwhenthebackgroundiscomplicated,itisdifficultforpreviousmodelstodisentanglethem.Toaddresstheseproblems,weproposeanovelstructuredmatrixdecompositionmodelwithtwostructuralregularizations:(1)atree-structuredsparsity-inducingregularizationthatcapturestheimagestructureandenforcespatchesfromthesameobjecttohavesimilarsaliencyvalues,and(2)aLaplacianregularizationthatenlargesthegapsbetweensalientobjectsandthebackgroundinfeaturespace.Furthermore,high-levelpriorsareintegratedtoguidethematrixdecompositionandboostthedetection.Weevaluateourmodelforsalientobjectdetectiononfivechallengingdatasetsincludingsingleobject,multipleobjectsandcomplexsceneimages,andshowcompetitiveresultsascomparedwith24state-of-the-artmethodsintermsofsevenperformancemetrics.","container-title":"IEEETransactionsonPatternAnalysis&MachineIntelligence","DOI":"10.1109/TPAMI.2016.2562626","issue":"4","page":"818-832","source":"BaiduScholar","title":"SalientObjectDetectionviaStructuredMatrixDecomposition","volume":"39","author":[{"family":"Peng","given":"Houwen"},{"family":"Li","given":"Bing"},{"family":"Ling","given":"Haibin"},{"family":"Hu","given":"Weiming"},{"family":"Xiong","given":"Weihua"},{"family":"Maybank","given":"StephenJ."}],"issued":{"date-parts":[["2017"]]}},"label":"page"},{"id":434,"uris":["/users/local/xIMhsWAM/items/9SJHRW7G"],"uri":["/users/local/xIMhsWAM/items/9SJHRW7G"],"itemData":{"id":434,"type":"article-journal","container-title":"IEEESignalProcessingLetters","issue":"8","note":"publisher:IEEE","page":"739–742","title":"Visualsaliencydetectionviasparsitypursuit","volume":"17","author":[{"family":"Yan","given":"Junchi"},{"family":"Zhu","given":"Mengyuan"},{"family":"Liu","given":"Huanxi"},{"family":"Liu","given":"Yuncai"}],"issued":{"date-parts":[["2010"]]}},"label":"page"}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[5,6]、人脸检测ADDINZOTERO_ITEMCSL_CITATION{"citationID":"aldsb4j4uo","properties":{"formattedCitation":"\\super[7]\\nosupersub{}","plainCitation":"[7]","noteIndex":0},"citationItems":[{"id":435,"uris":["/users/local/xIMhsWAM/items/NCMGC9DJ"],"uri":["/users/local/xIMhsWAM/items/NCMGC9DJ"],"itemData":{"id":435,"type":"article-journal","container-title":"Patternrecognition","issue":"11","note":"publisher:Elsevier","page":"3502–3511","title":"Fisherdiscriminationbasedlowrankmatrixrecoveryforfacerecognition","volume":"47","author":[{"family":"Zheng","given":"Zhonglong"},{"family":"Yu","given":"Mudan"},{"family":"Jia","given":"Jiong"},{"family":"Liu","given":"Huawen"},{"family":"Xiang","given":"Daohong"},{"family":"Huang","given":"Xiaoqiao"},{"family":"Yang","given":"Jie"}],"issued":{"date-parts":[["2014"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[7]等。纺织品图像是一种人造的纹理,虽然形态各异,结构复杂,但是其中存在着大量的视觉冗余,其图案由重复的纹理单元构成,而纺织品的瑕疵是相对孤立的,是稀疏的。因此纺织品的瑕疵检测相对于目前的显著性检测,更好地符合了低秩稀疏结构分解模型的特性。但是基于低秩稀疏结构分解的显著性检测算法大都是针对自然场景中的图像,其特征提取方式重点考虑了色差、亮度等特性。而纺织品图像由于存在着拉伸变形、光照等问题,不能直接应用以往的显著性检测算法。因此,需要提出一种适用于纺织品瑕疵检测领域的低秩稀疏结构分解模型,实现背景与瑕疵区域的分离。目前根据纺织品种类的不同,可以将纺织品分为两大类,第一类是背景简单没有复杂图案的纺织品,如平纹和斜纹,第二类是背景复杂且具有周期变化图案的纺织品,根据周期图案的不同又可细分为盒状,星状和点状纺织品。几种常见的纺织品瑕疵类型如图1-2所示,其中第一、二幅图像为第一类纺织品图像,后三幅为第二类纺织品图像。第一类纺织品图像的检测相对简单,目前已经有许多成熟有效的算法。而第二类周期性纺织品图像的瑕疵检测则更为复杂,通常是具有花纹的纺织品,如,地毯、床罩等。Ng等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"qS0fBlu2","properties":{"formattedCitation":"\\super[8]\\nosupersub{}","plainCitation":"[8]","noteIndex":0},"citationItems":[{"id":346,"uris":["/users/local/xIMhsWAM/items/NK4DXLPZ"],"uri":["/users/local/xIMhsWAM/items/NK4DXLPZ"],"itemData":{"id":346,"type":"article-journal","abstract":"©2017SocietyforIndustrialandAppliedMathematics.Inthispaper,westudyanimagedecompositionmodelforpatternedfabricinspection.Itisimportanttorepresentfabricpatternseffectivelysothatfabricdefectscanbeseparated.Oneconcernisthatbothpatternedfabric(e.g.,star-orbox-patternedfabrics)andfabricdefectscontainmainlylowfrequencycomponents.ThemainideaofthispaperistousetheconvolutionofalatticewithaDiraccombtocharacterizeapatternedfabricimagesothatitsrepetitivecomponentscanbeeffectivelyrepresentedintheimagedecompositionmodel.Weformulateamodelwithtotalvariation,sparsity,andlow-ranktermsforpatternedfabricinspection.Thetotalvariationtermisusedtoregularizethedefectiveimage,andthesparsityandthelow-ranktermsareemployedtocontroltheDiraccombfunction.Theproposedmodelcanbesolvedefficientlyviaaconvexprogrammingsolver.Ourexperimentalresultsfordifferenttypesofpatternedfabricsshowthattheproposedmodelcaninspectdefectsatahigheraccuracycomparedwithsomeclassicalmethodsintheliterature.","container-title":"SIAMJournalonImagingSciences","DOI":"10.1137/17M1113138","issue":"4","page":"2140-2164","source":"BaiduScholar","title":"Lattice-BasedPatternedFabricInspectionbyUsingTotalVariationwithSparsityandLow-RankRepresentations","volume":"10","author":[{"family":"Ng","given":"MichaelK."},{"family":"Ngan","given":"HenryY.T."},{"family":"Yuan","given":"Xiaoming"},{"family":"Zhang","given":"Wenxing"}],"issued":{"date-parts":[["2017"]]}},"label":"page"}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[8]将组成纺织品的基本图案称为基本周期图案块(Lattice),将可以通过自身的旋转复制而得到基本周期图案块的部分称为基础单元(Motif),如图1-3所示。图1-3(a)是含有周期变化图案的周期性纺织品,分别为盒型及星型纺织品,图1-3(b)是对应的基本周期图案块,图1-3(c)是基础单元。因此对于第二类纺织品的瑕疵检测相比于第一类将会更加复杂。本节主要介绍纺织品瑕疵检测的国内外研究现状及其相关算法,将针对第一类和第二类纺织品两个部分分别阐述。第一类无图案纺织品的出现时间较早,目前,已经出现了大量成熟有效的检测算法。基于统计的方法统计法通过直方图ADDINZOTERO_ITEMCSL_CITATION{"citationID":"rrSD6lbl","properties":{"formattedCitation":"\\super[9,10]\\nosupersub{}","plainCitation":"[9,10]","noteIndex":0},"citationItems":[{"id":106,"uris":["/users/local/xIMhsWAM/items/4MQPZXY6"],"uri":["/users/local/xIMhsWAM/items/4MQPZXY6"],"itemData":{"id":106,"type":"article-journal","container-title":"电子学报","issue":"8","page":"1778-1784","title":"二维直方图准分的Otsu图像分割及其快速实现","volume":"39","author":[{"family":"张新明","given":""},{"family":"孙印杰","given":""},{"family":"郑延斌","given":""}],"issued":{"date-parts":[["2011"]]}},"label":"page"},{"id":92,"uris":["/users/local/xIMhsWAM/items/Q9KZJ9MG"],"uri":["/users/local/xIMhsWAM/items/Q9KZJ9MG"],"itemData":{"id":92,"type":"article-journal","container-title":"光电子.激光","issue":"7","page":"1426-1433","source":"","title":"改进二维直方图区域划分的阈值分割方法研究","volume":"24","author":[{"family":"李淼","given":""},{"family":"杨恢先","given":""},{"family":"张建波","given":""},{"family":"周彤彤","given":""},{"family":"谭正华","given":""}],"issued":{"date-parts":[["2013"]]}},"label":"page"}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[9]、形态学ADDINZOTERO_ITEMCSL_CITATION{"citationID":"zAOK7K9a","properties":{"formattedCitation":"\\super[12,13]\\nosupersub{}","plainCitation":"[12,13]","noteIndex":0},"citationItems":[{"id":199,"uris":["/users/local/xIMhsWAM/items/7VI2M6A9"],"uri":["/users/local/xIMhsWAM/items/7VI2M6A9"],"itemData":{"id":199,"type":"article-journal","container-title":"ImageandVisionComputing","DOI":"10.1016/j.imavis.2009.03.007","ISSN":"02628856","issue":"10","language":"en","page":"1585-1592","source":"Crossref","title":"Fabricdefectdetectionusingmorphologicalfilters","volume":"27","author":[{"family":"Mak","given":"K.L."},{"family":"Peng","given":"P."},{"family":"Yiu","given":"K.F.C."}],"issued":{"date-parts":[["2009",9]]}},"label":"page"},{"id":109,"uris":["/users/local/xIMhsWAM/items/VKEPCW4K"],"uri":["/users/local/xIMhsWAM/items/VKEPCW4K"],"itemData":{"id":109,"type":"article-journal","container-title":"光电工程","issue":"8","page":"90-95","source":"BaiduScholar","title":"基于小波多尺度积与形态学的瑕疵检测算法","volume":"38","author":[{"literal":"崔玲玲"},{"literal":"卢朝阳"},{"literal":"李静"},{"literal":"李益红"}],"issued":{"date-parts":[["2011"]]}},"label":"page"}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[10]、共生矩阵ADDINZOTERO_ITEMCSL_CITATION{"citationID":"wG7u3dOl","properties":{"formattedCitation":"\\super[14]\\nosupersub{}","plainCitation":"[14]","noteIndex":0},"citationItems":[{"id":115,"uris":["/users/local/xIMhsWAM/items/EQ83E4FE"],"uri":["/users/local/xIMhsWAM/items/EQ83E4FE"],"itemData":{"id":115,"type":"article-journal","container-title":"计算机研究与发展","issue":"11","page":"1991-1999","title":"基于多分辨共生矩阵的纹理图像分类","volume":"48","author":[{"literal":"钟桦"},{"literal":"杨晓鸣"},{"literal":"焦李成"}],"issued":{"date-parts":[["2011"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[11]等计算不同纹理特征的差异性来判别背景与瑕疵ADDINZOTERO_ITEMCSL_CITATION{"citationID":"a1lihbnekpb","properties":{"formattedCitation":"\\super[15]\\nosupersub{}","plainCitation":"[15]","noteIndex":0},"citationItems":[{"id":436,"uris":["/users/local/xIMhsWAM/items/5SHW5PUK"],"uri":["/users/local/xIMhsWAM/items/5SHW5PUK"],"itemData":{"id":436,"type":"article-journal","container-title":"TheJournalofTheTextileInstitute","issue":"2","note":"publisher:Taylor&Francis","page":"233–241","title":"Detectionofchemicalfabricdefectsonthebasisofmorphologicalprocessing","volume":"107","author":[{"family":"Hu","given":"Jiajuan"},{"family":"He","given":"Zhiyong"},{"family":"Weng","given":"Guirong"},{"family":"Sun","given":"Lining"},{"family":"Zuo","given":"Baoqi"},{"family":"Wang","given":"Chen"}],"issued":{"date-parts":[["2016"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[12]。Rebhi等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"a1lihbnekpb","properties":{"formattedCitation":"\\super[15]\\nosupersub{}","plainCitation":"[15]","noteIndex":0},"citationItems":[{"id":436,"uris":["/users/local/xIMhsWAM/items/5SHW5PUK"],"uri":["/users/local/xIMhsWAM/items/5SHW5PUK"],"itemData":{"id":436,"type":"article-journal","container-title":"TheJournalofTheTextileInstitute","issue":"2","note":"publisher:Taylor&Francis","page":"233–241","title":"Detectionofchemicalfabricdefectsonthebasisofmorphologicalprocessing","volume":"107","author":[{"family":"Hu","given":"Jiajuan"},{"family":"He","given":"Zhiyong"},{"family":"Weng","given":"Guirong"},{"family":"Sun","given":"Lining"},{"family":"Zuo","given":"Baoqi"},{"family":"Wang","given":"Chen"}],"issued":{"date-parts":[["2016"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[13]提出了一种基于局部同质性和数学形态学的纺织品检测新方法,仿真结果显示,该方法能准确检测出瑕疵区域。Jing等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"a1lihbnekpb","properties":{"formattedCitation":"\\super[15]\\nosupersub{}","plainCitation":"[15]","noteIndex":0},"citationItems":[{"id":436,"uris":["/users/local/xIMhsWAM/items/5SHW5PUK"],"uri":["/users/local/xIMhsWAM/items/5SHW5PUK"],"itemData":{"id":436,"type":"article-journal","container-title":"TheJournalofTheTextileInstitute","issue":"2","note":"publisher:Taylor&Francis","page":"233–241","title":"Detectionofchemicalfabricdefectsonthebasisofmorphologicalprocessing","volume":"107","author":[{"family":"Hu","given":"Jiajuan"},{"family":"He","given":"Zhiyong"},{"family":"Weng","given":"Guirong"},{"family":"Sun","given":"Lining"},{"family":"Zuo","given":"Baoqi"},{"family":"Wang","given":"Chen"}],"issued":{"date-parts":[["2016"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[14]提出了基于局部二值模式(LBP)和灰度共生矩阵的纺织品瑕疵分类算法,取得了99.33%的分类效果。Zhou等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"a1lihbnekpb","properties":{"formattedCitation":"\\super[15]\\nosupersub{}","plainCitation":"[15]","noteIndex":0},"citationItems":[{"id":436,"uris":["/users/local/xIMhsWAM/items/5SHW5PUK"],"uri":["/users/local/xIMhsWAM/items/5SHW5PUK"],"itemData":{"id":436,"type":"article-journal","container-title":"TheJournalofTheTextileInstitute","issue":"2","note":"publisher:Taylor&Francis","page":"233–241","title":"Detectionofchemicalfabricdefectsonthebasisofmorphologicalprocessing","volume":"107","author":[{"family":"Hu","given":"Jiajuan"},{"family":"He","given":"Zhiyong"},{"family":"Weng","given":"Guirong"},{"family":"Sun","given":"Lining"},{"family":"Zuo","given":"Baoqi"},{"family":"Wang","given":"Chen"}],"issued":{"date-parts":[["2016"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[15]将五个分形特征与模糊C均值相结合,在标准数据库上,取得了较低的误检率。Conci等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"dwM7fQvp","properties":{"formattedCitation":"\\super[16]\\nosupersub{}","plainCitation":"[16]","noteIndex":0},"citationItems":[{"id":316,"uris":["/users/local/xIMhsWAM/items/54UCNA2U"],"uri":["/users/local/xIMhsWAM/items/54UCNA2U"],"itemData":{"id":316,"type":"article-journal","abstract":"Industrialvisionsystemsmustoperateinreal-time,producealowfalsealarmrateandbeflexiblesoastoaccommodatechangesinthemanufacturingprocesseasily.Thisworkpresentsasystemforfabricmanufacturinginspection.Thisenvironment,likepaperandbirchwoodboardindustries,hasparticularcharacteristicsinwhichmorphologicalfeatureextractionforautomatedvisualinspectioncannotbeused.Theutilizationoffractaldimensionisinvestigatedfordiscriminatingdefectiveareas.Theefficiencyofthisapproachisillustratedintextileimagesfordefectrecognition(withoverall96%accuracy).Whilethismaysoundcomplex,themethodisinfactsimpleenoughtobesuitableforPCimplementation,asdemonstratedinthepresentwork,andutilizationacrosstheWordWideWeb","container-title":"ComputerNetworks&IsdnSystems","DOI":"10.1016/s0169-7552(98)00211-6","issue":"20-21","page":"1887-1895","source":"BaiduScholar","title":"Afractalimageanalysissystemforfabricinspectionbasedonabox-countingmethod","volume":"30","author":[{"family":"Conci","given":"Aura"},{"literal":"ClaudiaBelmiroProen?a"}],"issued":{"date-parts":[["1998"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[16]采用分形的思想对纺织品进行检测,并假设当分形的结构发生变化时含有瑕疵。基于频谱分析的方法频谱分析法将纺织品图像从空间域变换至变换域,通过在变换域更好地突出瑕疵区域。频谱分析法比较有代表性的理论有傅里叶变换、Gabor变换及小波变换等。Sarma等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"a1ak63c3db4","properties":{"formattedCitation":"\\super[17]\\nosupersub{}","plainCitation":"[17]","noteIndex":0},"citationItems":[{"id":437,"uris":["/users/local/xIMhsWAM/items/EJR898CP"],"uri":["/users/local/xIMhsWAM/items/EJR898CP"],"itemData":{"id":437,"type":"paper-conference","container-title":"2013InternationalConferenceonAdvancedElectronicSystems(ICAES)","page":"157–159","publisher":"IEEE","title":"Detectingthesurfacedefectsonhotrolledsteelsheetsusingtextureanalysis","author":[{"family":"Sarma","given":"ASadaSiva"},{"family":"Janani","given":"R"},{"family":"Sarma","given":"ASV"}],"issued":{"date-parts":[["2013"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[17]采用三层二维小波变换来提取纺织品的纹理特征,并通过训练人工神经网络(ANN)分类器来检测热轧钢表面的瑕疵。基于训练的方法训练法多采用神经网络算法,通过构建多层的网络来训练参数,在将训练出的参数作为阈值来判断是否为瑕疵块。Zhang等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"WLzxsJ27","properties":{"formattedCitation":"\\super[18]\\nosupersub{}","plainCitation":"[18]","noteIndex":0},"citationItems":[{"id":356,"uris":["/users/local/xIMhsWAM/items/GVDB2NPB"],"uri":["/users/local/xIMhsWAM/items/GVDB2NPB"],"itemData":{"id":356,"type":"article-journal","abstract":"Inthispaper,anewapproachforfabricdefectclassificationusingradialbasisfunction(RBF)networkimprovedbyGaussianmixturemodel(GMM)isinvestigated.First,thegraylevelarrangementintheneighborhoodofeachpixelisextractedasthefeature.Thisrawfeatureissubjecttoprincipalcomponentanalysis(PCA)whichadoptsthebetweenclassscattermatrixasthegenerationmatrixtoeliminatethevariancewithinthesameclass.Second,theRBFnetworkwithGaussiankernelisusedastheclassifierbecauseofthenonlineardiscriminationabilityandsupportformulti-output.Totraintheclassifier,GMMisintroducedtoclusterthefeaturesetandpreciselyestimatetheparameterinGaussianRBF,inwhicheachclusterstrictlyconformstoamulti-varianceGaussiandistribution.ThustheparameterofeachkernelfunctioninRBFnetworkcanbeacquiredfromacorrespondingcluster.Theproposedalgorithmisexperimentedonfabricdefectimageswithnineclassesandachievessuperiorperformance,whichprovesitsutilityinpractice.","collection-title":"Meta-heuristicIntelligenceBasedImageProcessing","container-title":"PatternRecognitionLetters","DOI":"10.1016/j.patrec.2010.05.030","ISSN":"0167-8655","issue":"13","journalAbbreviation":"PatternRecognitionLetters","language":"en","page":"2033-2042","source":"ScienceDirect","title":"Fabricdefectclassificationusingradialbasisfunctionnetwork","volume":"31","author":[{"family":"Zhang","given":"Yu"},{"family":"Lu","given":"Zhaoyang"},{"family":"Li","given":"Jing"}],"issued":{"date-parts":[["2010",10,1]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[18]研究了一种利用高斯混合模型(GMM)改进的径向基函数(RBF)网络进行纺织品瑕疵点分类的新方法。基于模型的方法基于模型的方法主要包括马尔科夫随机场模型ADDINZOTERO_ITEMCSL_CITATION{"citationID":"a1qae9pcbeq","properties":{"formattedCitation":"\\super[19]\\nosupersub{}","plainCitation":"[19]","noteIndex":0},"citationItems":[{"id":200,"uris":["/users/local/xIMhsWAM/items/VB6LRANG"],"uri":["/users/local/xIMhsWAM/items/VB6LRANG"],"itemData":{"id":200,"type":"article-journal","container-title":"IEEETransactionsonPatternAnalysisandMachineIntelligence","DOI":"10.1109/TPAMI.2004.30","ISSN":"0162-8828","issue":"7","language":"en","page":"951-955","source":"Crossref","title":"GaussianMRFrotation-invariantfeaturesforimageclassification","volume":"26","author":[{"literal":"HuawuDeng"},{"family":"Clausi","given":"D.A."}],"issued":{"date-parts":[["2004",7]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[19],高斯混合模型及自回归模型。Ozdemir等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"NovxlewI","properties":{"formattedCitation":"\\super[20]\\nosupersub{}","plainCitation":"[20]","noteIndex":0},"citationItems":[{"id":333,"uris":["/users/local/xIMhsWAM/items/GRY8HV6L"],"uri":["/users/local/xIMhsWAM/items/GRY8HV6L"],"itemData":{"id":333,"type":"article-journal","container-title":"纺织学报","issue":"4","page":"137-142","source":"","title":"基于GMRF模型的统计特征畸变织物疵点识别","author":[{"family":"杨晓波","given":""}],"issued":{"date-parts":[["2013"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[20]以马尔科夫随机场模型为基础,结合KL变换进行纺织品的瑕疵检测,大大提高了检测效率。Basu等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"ReIUZ7oN","properties":{"formattedCitation":"\\super[21]\\nosupersub{}","plainCitation":"[21]","noteIndex":0},"citationItems":[{"id":408,"uris":["/users/local/xIMhsWAM/items/PEQK3GGC"],"uri":["/users/local/xIMhsWAM/items/PEQK3GGC"],"itemData":{"id":408,"type":"paper-conference","abstract":"Considersaspecificclassoftextureswhicharestochastic,possiblyperiodic,two-dimensionalsignalsdisplayingfractal-likeorself-similarcharacteristics.Mostnaturaltexturesbelongtothisclass.Theauthorsexploretheuseofautoregressive(AR)processesontreesastexturemodel.ThistheorywasproposedbyBassevilleetal.(1992)formultiscalesignalanalysis.ThegeneralizedlatticestructuresusedforparametrizationofARprocessesontreesmakecomputerimplementationfastandefficient.Theauthorshavedoneextensiveexperimentsontexturegenerationandstudytheeffectofreflectioncoefficientsandmodelorderonthequalityofgeneratedtextures","container-title":"IaprInternationalConferenceonPatternRecognitionVolIIIConferenceC:Image","DOI":"10.1109/ICPR.1992.202013","source":"BaiduScholar","title":"Multi-scalemodelingoftextures","URL":"/publication/3513942_Multi-scale_modeling_of_textures","author":[{"family":"Basu","given":"M."},{"family":"Lin","given":"Z."}],"accessed":{"date-parts":[["2020",1,4]]},"issued":{"date-parts":[["1992"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[21]提出了一种多尺度自回归模型,考虑一类特殊的纹理,这些纹理是随机的,可能是周期性的,显示分形或自相似特征的二维信号,在花纹类图案上取得了一定的效果。1.3.2周期性纺织品瑕疵检测算法上述的瑕疵检测算法虽然在一定程度上取得了较好的检测结果,但基本上都是针对简单的平纹、斜纹类纺织品。第二类周期性纺织品因其纹理的复杂,成熟的检测算法较少,但经过近几年的快速发展,已经形成了多种检测方法,可以分为模板法、统计法和图像分解法等。模板法在模板法中,传统的图像相减法(Traditionalimagesubtraction,TIS)是一种常用的方法。Ngan等人ADDINZOTERO_ITEMCSL_CITATION{"citationID":"a2q362fn5au","properties":{"formattedCitation":"\\super[22]\\nosupersub{}","plainCitation":"[22]","noteIndex":0},"citationItems":[{"id":439,"uris":["/users/local/xIMhsWAM/items/VTZIRF99"],"uri":["/users/local/xIMhsWAM/items/VTZIRF99"],"itemData":{"id":439,"type":"paper-conference","container-title":"32ndAppliedImageryPatternRecognitionWorkshop,2003.Proceedings.","page":"163–168","publisher":"IEEE","title":"Defectdetectiononpatternedjacquardfabric","author":[{"family":"Ngan","given":"HenryYT"},{"family":"Pang","given":"GranthamKH"},{"family":"Yung","given":"SP"},{"family":"Ng","given":"MichaelK"}],"issued":{"date-parts":[["2003"]]}}}],"schema":"/citation-style-language/schema/raw/master/csl-citation.json"}[22]在TIS的基础上提出了一种黄金图像相减法(Goldenimagesubtraction,GIS),其中一个黄金块就称为一个模板。然后又在GIS的基础上,提出一种基于小波预处理的黄金图像相减法(WGIS)ADDINZOTERO_ITEMCSL_CITATION{"citationID":"kpLSAucQ","properties":{"formattedCitation":"\\super[23]\\nosupersub{}","plainCitation":"[23]","noteIndex":0},"citationItems":[{"id":124,"uris":["/users/local/xIMhsWAM/items/58P4KFWD"],"uri":["/users/local/xIMhsWAM/items/58P4KFWD"],"itemData":{"id":124,"type":"article-journal","container-title":"PatternRecognition","issue":"4","page":"559-576","title":"Waveletbasedmethodsonpatternedfabricdefectdete

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论