2024届广西南宁市马山县金伦中学“4+ N”高中联合体高二数学第一学期期末质量跟踪监视试题含解析_第1页
2024届广西南宁市马山县金伦中学“4+ N”高中联合体高二数学第一学期期末质量跟踪监视试题含解析_第2页
2024届广西南宁市马山县金伦中学“4+ N”高中联合体高二数学第一学期期末质量跟踪监视试题含解析_第3页
2024届广西南宁市马山县金伦中学“4+ N”高中联合体高二数学第一学期期末质量跟踪监视试题含解析_第4页
2024届广西南宁市马山县金伦中学“4+ N”高中联合体高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西南宁市马山县金伦中学“4+N”高中联合体高二数学第一学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,若,其中是自然对数底,则()A. B.C. D.2.已知,,则的最小值为()A. B.C. D.3.若直线与直线垂直,则a=()A.-2 B.0C.0或-2 D.14.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.5.如图,已知、分别是椭圆的左、右焦点,点、在椭圆上,四边形是梯形,,且,则的面积为()A. B.C. D.6.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为A. B.C. D.7.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为8.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.9.已知是双曲线:的右焦点,是坐标原点,过作的一条渐近线的垂线,垂足为,并交轴于点.若,则的离心率为()A. B.C.2 D.10.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆的离心率为()A. B.C. D.11.已知,,且,则向量与的夹角为()A. B.C. D.12.圆与圆的位置关系为()A.内切 B.外切C.相交 D.相离二、填空题:本题共4小题,每小题5分,共20分。13.已知5件产品中有2件次品、3件合格品,从这5件产品中任取2件,求2件都是合格品的概率_______.14.若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列进行构造,第次得到数列;第次得到数列;依次构造,第次得到数列;记,则(1)___________,(2)___________15.已知数列满足,,则数列的前n项和______16.甲、乙两人独立地破译一份密码,已知各人能破译的概率分别为,则密码被成功破译的概率_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求的单调区间与极值;(2)若不等式在区间上恒成立,求k的取值范围18.(12分)“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图1所示:(1)利用图1,求网民消费金额的平均值和中位数;(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关.男女合计30合计45附表:P(χ2≥k0)0.100.050.012.7063.8416.635参考公式:χ2=.19.(12分)如图,在四棱锥P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD为正方形,M、N、Q分别为AD、PD、BC的中点(1)证明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值20.(12分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.21.(12分)在正方体中,、、分别是、、的中点(1)证明:平面平面;(2)证明:22.(10分)已知椭圆的焦距为4,点在G上.(1)求椭圆G方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用函数的单调性可得正确的选项.【详解】令,因为均为,故为上的增函数,由可得,故,故选:A.2、B【解析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【点睛】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.3、C【解析】代入两直线垂直的公式,即可求解.【详解】因为两直线垂直,所以,解得:或.故选:C4、A【解析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A5、A【解析】设点关于原点的对称点为点,连接、,分析可知、、三点共线,设点、,设直线的方程为,分析可知,将直线的方程与椭圆的方程联立,列出韦达定理,求出的值,可得出的值,再利用三角形的面积公式可求得结果.【详解】设点关于原点的对称点为点,连接、,如下图所示:因为为、的中点,则四边形为平行四边形,可得且,因为,故、、三点共线,设、,易知点,,,由题意可知,,可得,若直线与轴重合,设,,则,不合乎题意;设直线的方程为,联立,可得,由韦达定理可得,得,,则,可得,故,因此,.故选:A.6、A【解析】若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质7、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A8、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A9、A【解析】由条件建立a,b,c的关系,由此可求离心率的值.【详解】设,则,∵,∴,∴,∴,∴,∴,∴离心率,故选:A.10、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.11、B【解析】先求出向量与的夹角的余弦值,即可求出与的夹角.【详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.12、B【解析】求出两圆的圆心距与半径之和、半径之差比较大小即可得出正确答案.【详解】由可得圆心为,半径,由可得圆心为,半径,所以圆心距为,所以两圆相外切,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】列举总的基本事件及满足题目要求的基本事件,然后用古典概型的概率公式求解即可.【详解】设5件产品中的次品为,合格品为,则从这5件产品中任取2件,有共10个基本事件,其中2件都是合格品的有共3个基本事件,故2件都是合格品的概率为故答案为:.14、①.②.【解析】根据题意得到,再利用叠加法求解即可.【详解】由题知:,,,所以,,,……,,所以,,……,,即,所以.故答案为:;15、【解析】先求出,利用裂项相消法求和.【详解】因为数列满足,,所以数列为公差d=2的等差数列,所以,所以所以.故答案为:.16、【解析】根据题意,由相互独立事件概率的乘法公式可得密码没有被破译的概率,进而由对立事件的概率性质分析可得答案【详解】解:根据题意,甲乙两人能成功破译的概率分别是,,则密码没有被破译,即甲乙都没有成功破译密码概率,故该密码被成功破译的概率故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在上单调递增,在上单调递减,极大值为﹣1,无极小值(2)【解析】(1)利用导数求出单调区间,即可求出极值;(2)令,利用分离参数法得到,利用导数求出的最大值即可求解.【小问1详解】当时,,定义域为,当时,,单调递增;当时,,单调递减∴当时,取得极大值﹣1所以在上单调递增,在上单调递减极大值为﹣1,无极小值【小问2详解】由,得,令,只需.求导得,所以当时,,单调递增,当时,,单调递减,∴当时,取得最大值,∴k的取值范围为18、(1),(2)列联表见解析,没有【解析】(1)根据平均数的定义求平均数,由于前2组的频率和恰好为,从而可求出中位数,(2)根据频率分布表结合已知的数据计算完成列联表,然后计算χ2公式计算χ2,再根据临界值表比较可得结论【小问1详解】以每组的中间值代表本组的消费金额,则网民消费金额的平均值为0.频率直方图中第一组、第二组的频率之和为,中位数;【小问2详解】把下表中空格里的数填上,得列联表如下;男女合计252550203050合计4555100计算,所以没有的把握认为网购消费与性别有关.19、(1)证明过程见解析(2)【解析】(1)由线线平行证明线面平行;(2)建立空间直角坐标系,利用空间向量进行求解二面角的余弦值.【小问1详解】因为M,N是DA,PD的中点,所以MN//AP,因为平面PAQ,平面PAQ,所以MN//平面PAQ因为四边形ABCD为正方形,且Q为BC中点,所以MA//CQ,且MA=CQ,所以四边形MAQC为平行四边形,所以CM//AQ,因为平面PAQ,平面PAQ,所以MC//平面PAQ,因为,所以面PAQ//面MNC【小问2详解】因为PD⊥CD,PD⊥AD,AD⊥CD故以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DP所在直线为z轴建立空间直角坐标系,则,,,设平面NMC的法向量为,则,令得:,所以,平面NDC的法向量为,则,设二面角M-NC-D的大小为,显然为锐角,则20、(1)(2)【解析】(1)由条件得,则利用等差数列的定义可得答案;(2)利用裂项求和求出,再根据可求出n.【小问1详解】由得,从而数列是以1为首项,1为公差的等差数列,所以;【小问2详解】由(1)得,由得又,所以.21、(1)证明见解析;(2)证明见解析.【解析】(1)连接,分别证明出平面,平面,利用面面平行的判定定理可证得结论成立;(2)证明出平面,利用线面垂直的性质可证得结论成立.【小问1详解】证明:连接,在正方体中,,,所以,四边形为平行四边形,所以,在中,、分别为、的中点,所以,,所以,,因为平面,平面,所以,平面因为且,、分别为、的中点,则且,所以,四边形为平行四边形,则,,平面,平面,平面又,所以,平面平面【小问2详解】证明:在正方体中,平面,平面,,因为四边形为正方形,则,因为,则平面由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论