本溪市重点中学2023年高二数学第一学期期末联考模拟试题含解析_第1页
本溪市重点中学2023年高二数学第一学期期末联考模拟试题含解析_第2页
本溪市重点中学2023年高二数学第一学期期末联考模拟试题含解析_第3页
本溪市重点中学2023年高二数学第一学期期末联考模拟试题含解析_第4页
本溪市重点中学2023年高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本溪市重点中学2023年高二数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆C:的一个焦点为(0,-2),则k的值为()A.5 B.3C.9 D.252.阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A B.C. D.3.过双曲线的右焦点有一条弦是左焦点,那么的周长为()A.28 B.C. D.4.在平面上有及内一点O满足关系式:即称为经典的“奔驰定理”,若的三边为a,b,c,现有则O为的()A.外心 B.内心C.重心 D.垂心5.函数的导数记为,则等于()A. B.C. D.6.已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A. B.C. D.7.设函数在上可导,则等于()A. B.C. D.以上都不对8.已知向量,,且,则值是()A. B.C. D.9.已知椭圆的长轴长为,短轴长为,则椭圆上任意一点到椭圆中心的距离的取值范围是()A. B.C. D.10.直线且的倾斜角为()A. B.C. D.11.数列满足,对任意,都有,则()A. B.C. D.12.某家庭准备晚上在餐馆吃饭,他们查看了两个网站关于四家餐馆的好评率,如下表所示,考虑每家餐馆的总好评率,他们应选择()网站①评价人数网站①好评率网站②评价人数网站②好评率餐馆甲100095%100085%餐馆乙1000100%200080%餐馆丙100090%100090%餐馆丁200095%100085%A.餐馆甲 B.餐馆乙C.餐馆丙 D.餐馆丁二、填空题:本题共4小题,每小题5分,共20分。13.已知O为坐标原点,,是抛物线上的两点,且满足,则______;若OM垂直AB于点M,且为定值,则点Q的坐标为__________.14.若双曲线的一条渐近线的倾斜角为,则双曲线的离心率为___________.15.在的展开式中,含项的系数为______(结果用数值表示)16.已知正项等比数列的前n项和为,且,则的最小值为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的一个焦点与曲线的焦点重合,且离心率为.(1)求椭圆的方程(2)设直线:交椭圆于M,N两点.①若且的面积为,求的值.②若轴上的任意一点到直线与直线(为椭圆的右焦点)的距离相等,求证:直线恒过定点,并求出该定点坐标18.(12分)如图,在正方体中,分别是,的中点.求证:(1)平面;(2)平面平面.19.(12分)已知抛物线C的焦点为,N为抛物线上一点,且(1)求抛物线C的方程;(2)过点F且斜率为k的直线l与C交于A,B两点,,求直线l的方程20.(12分)已知的展开式中只有第五项的二项式系数最大.(1)求该展开式中有理项的项数;(2)求该展开式中系数最大的项.21.(12分)如图,在三棱锥中,侧面PAB是边长为4的正三角形且与底面ABC垂直,点D,E,F,H分别是棱PA,AB,BC,PC的中点(1)若点G在棱BC上,且BG=3GC,求证:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值22.(10分)2022北京冬奥会即将开始,北京某大学鼓励学生积极参与志愿者的选拔.某学院有6名学生通过了志愿者选拔,其中4名男生,2名女生(1)若从中挑选2名志愿者,求入选者正好是一名男生和一名女生的概率;(2)若从6名志愿者中任选3人负责滑雪项目服务岗位,那么现将6人分为A、B两组进行滑雪项目相关知识及志愿者服务知识竞赛,共赛10局.A、B两组分数(单位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139从统计学角度看,应选择哪个组更合适?理由是什么?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意可得焦点在轴上,由,可得k的值.【详解】∵椭圆的一个焦点是,∴,∴,故选:A2、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.3、C【解析】根据双曲线方程得,,由双曲线的定义,证出,结合即可算出△的周长【详解】双曲线方程为,,根据双曲线的定义,得,,,,相加可得,,,因此△的周长,故选:C4、B【解析】利用三角形面积公式,推出点O到三边距离相等。【详解】记点O到AB、BC、CA的距离分别为,,,,因为,则,即,又因为,所以,所以点P是△ABC的内心.故选:B5、D【解析】求导后代入即可.【详解】,.故选:D.6、A【解析】由题,可得是定义在上的偶函数,且在上单调递减,在上单调递增,根据函数的单调性,即可判断出的大小关系.【详解】设,由题,得,即,所以函数在上单调递减,因为是定义在R上的奇函数,所以是定义在上的偶函数,因此,,,即.故选:A【点睛】本题主要考查利用函数的单调性判断大小的问题,其中涉及到构造函数的运用.7、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C8、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.9、A【解析】不妨设椭圆的焦点在轴上,设点,则,且有,利用二次函数的基本性质可求得的取值范围.【详解】不妨设椭圆的焦点在轴上,则该椭圆的标准方程为,设点,则,且有,所以,.故选:A.10、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.11、C【解析】首先根据题设条件可得,然后利用累加法可得,所以,最后利用裂项相消法求和即可.【详解】由,得,则,所以,.故选:C.【点睛】本题考查累加法求数列通项,考查利用错位相减法求数列的前n项和,考查逻辑思维能力和计算能力,属于常考题.12、D【解析】根据给定条件求出各餐馆总好评率,再比较大小作答.【详解】餐馆甲的总好评率为:,餐馆乙的总好评率为:,餐馆丙的好评率为:,餐馆丁的好评率为:,显然,所以餐馆丁的总好评率最高.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.-24②.【解析】由抛物线的方程及数量积的运算可求出,设直线AB的方程为,联立抛物线方程,由根与系数的关系可求出,由圆的定义求出圆心即可.【详解】由,即解得或(舍去).设直线AB的方程为.由,消去x并整理得,.又,,直线AB恒过定点N(6,0),OM垂直AB于点M,点M在以ON为直径圆上.|MQ|为定值,点Q为该圆的圆心,又即Q(3,0).故答案为:;14、2【解析】利用双曲线的渐近线的倾斜角,求解,关系,然后求解离心率,即可求解.【详解】双曲线一条渐近线的倾斜角为,可得,所以,所以双曲线的离心率为.故答案为:2.15、12【解析】通过二次展开式就可以得到.【详解】的展开式中含含项的系数为故答案为:1216、16【解析】根据是等比数列,由,即可得也是等比数列,结合基本不等式的性质即可求出的最小值.【详解】是等比数列,,即,也是等比数列,且,,可得:,当且仅当时取等号,的最小值为16.故答案为:16三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①;②证明见解析,定点的坐标为【解析】(1)由所给条件确定基本量即可.(2)①代入消元,韦达定理整体思想,列出关于的方程从而得解;②由已知可知,得到关于、的一次关系式可得证.【小问1详解】由已知椭圆的右焦点坐标为,,所以,椭圆的方程:【小问2详解】①将与椭圆方程联立得.设,,则,解得,∴,,点到直线的距离为,∴,解得(舍去负值),∴.②设,,将与椭圆方程联立,得,当时,∴,,,若轴上任意一点到直线与的距离均相等,则轴为直线与的夹角的平分线,∴,即,∴.∴,解得.∴.∴直线恒过一定点,该定点的坐标为.18、证明见解析【解析】(1)连接,根据线面平行的判定定理,即可证明结论成立;(2)连接,,先由线面平行的判定定理,得到平面,再由(1)的结果,结合面面平行的判定定理,即可证明结论成立.【详解】(1)如图,连接.∵四边形是正方形,是的中点,∴是的中点.又∵是的中点,∴.∵平面,平面,∴平面.(2)连接,,∵四边形是正方形,是的中点,∴是的中点.又∵是中点,∴.∵平面平面,∴平面.由(1)知平面,且,∴平面平面.【点睛】本题主要考查证明线面平行与面面平行,熟记线面平行的判定定理以及面面平行的判定定理即可,属于常考题型.19、(1)(2)或【解析】(1)抛物线的方程为,利用抛物线的定义求出点N,代入抛物线方程即可求解.(2)设直线的方程为,将直线与抛物线方程联立,利用韦达定理以及焦半径公式可得或,即求.【小问1详解】抛物线的方程为,设,依题意,由抛物线定义,即.所以,又由,得,解得(舍去),所以抛物线的方程为.【小问2详解】由(1)得,设直线的方程为,,,由,得.因为,故所以.由题设知,解得或,因此直线方程为或.20、(1);(2)和【解析】(1)先求出,再写出二项式展开式的通项,令即可求解;(2)设第项系数最大,则,即可解得的值,进而可得展开式中系数最大的项.【详解】(1)由题意可得:,得,的展开式通项为,,要求展开式中有理项,只需令,所以所以有理项有5项,(2)设第项系数最大,则,即,即,解得:,因为,所以或所以,所以展开式中系数最大的项为和.【点睛】解二项式的题关键是求二项式展开式的通项,求有理项需要让的指数位置是整数,求展开式中系数最大的项需要满足第项的系数大于等于第项的系数,第项的系数大于等于第项的系数,属于中档题21、(1)证明见解析;(2).【解析】(1)由中位线的性质可得、、,再由线面平行的判定可证平面PEF、平面PEF,最后根据面面平行的判定证明结论.(2)应用勾股定理、等边三角形的性质、面面和线面垂直的性质可证、、两两垂直,构建空间直角坐标系,求面BPC、面PCA的法向量,再应用空间向量夹角的坐标表示求二面角的余弦值.【小问1详解】因为D,H分别是PA,PC的中点,所以因为E,F分别是AB,BC的中点,所以,综上,,又平面PEF,平面PEF,所以平面PEF由题意,G是CF的中点,又H是PC的中点,所以,又平面PEF,平面PEF,所以平面PEF由,HG,平面DHG,所以平面平面DHG【小问2详解】在△ABC中,AB=4,AC=2,,所以,所以,又,则因为△PAB为等边三角形,点E为AB的中点,所以,又平面平面ABC,平面平面ABC=AB,所以平面ABC,面ABC,故综上,以E为坐标原点,以EB,EF,EP所在直线分别为x,y,z轴,建立空间直角坐标系,如图所示,有,,,,则,,设平面BPC的法向量为,则,令,则设平面PCA的法向量为,则,令,则所以.由图知,二面角的平面角为锐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论