




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市周浦中学高二上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.192
里 B.96
里C.48
里 D.24
里2.设正实数,满足(其中为正常数),若的最大值为3,则()A.3 B.C. D.3.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.04.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.5.已知函数,则()A.1 B.2C.3 D.56.设,是椭圆C:的左、右焦点,若椭圆C上存在一点P,使得,则椭圆C的离心率e的取值范围为()A. B.C. D.7.已知四棱锥,底面为平行四边形,分别为,上的点,,设,则向量用为基底表示为()A. B.C. D.8.据有关文献记载:我国古代一座层塔共挂了盏灯,且相邻两层中的下一层灯数比上一层灯数都多为常数盏,底层的灯数是顶层的倍,则塔的底层共有灯()A.盏 B.盏C.盏 D.盏9.设变量满足约束条件:,则的最小值()A. B.C. D.10.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.11.考试停课复习期间,小王同学计划将一天中的7节课全部用来复习4门不同的考试科目,每门科目复习1或2节课,则不同的复习安排方法有()种A.360 B.630C.2520 D.1512012.抛物线的准线方程是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.圆锥的高为1,底面半径为,则过圆锥顶点的截面面积的最大值为____________14.函数是R上的单调递增函数,则a的取值范围是______15.已知抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,则p=__16.下列说法中,正确的有_________(填序号).①“”是“方程表示椭圆”的必要而不充分条件;②若:,则:;③“,”的否定是“,”;④若命题“”为假命题,则命题一定是假命题;⑤是直线:和直线:垂直的充要条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求的单调递减区间;(Ⅱ)若当时,恒成立,求实数a的取值范围.18.(12分)已知函数(1)求函数的图象在点处的切线方程;(2)求函数的极值19.(12分)在等差数列中,已知公差,前项和(其中)(1)求;(2)求和:20.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值21.(12分)已知双曲线()的一个焦点是,离心率.(1)求双曲线的方程;(2)若斜率为的直线与双曲线交于两个不同的点,线段的垂直平分线与两坐标轴围成的三角形的面积为,求直线的方程22.(10分)已知等比数列的公比,且,的等差中项为5,.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题可得此人每天走的步数等比数列,根据求和公式求出首项可得.【详解】由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得,解得,第此人第二天走里.故选:B2、D【解析】由于,,为正数,且,所以利用基本不等式可求出结果【详解】解:因为正实数,满足(其中为正常数),所以,则,所以,所以故选:D.3、A【解析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A4、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.5、C【解析】利用导数的定义,以及运算法则,即可求解.【详解】,,所以,所以故选:C6、B【解析】先设,根据P在椭圆上得到,由,得到的范围,即为离心率的范围.【详解】由椭圆的方程可得,,设,由,则,即,由P在椭圆上可得,所以,代入可得所以,因为,所以整理可得:,消去得:所以,即所以.故选:B7、D【解析】通过寻找封闭的三角形,将相关向量一步步用基底表示即可.【详解】.故选:D8、C【解析】根据给定条件利用等差数列前n项和公式列式计算即可作答.【详解】依题意,层塔从上层到下层挂灯盏数依次排成一列可得等差数列,,于是得,解得,,所以塔的底层共有灯盏.故选:C9、D【解析】如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.10、B【解析】由空间向量的线性运算求解【详解】由题意,又,,,∴,故选:B11、C【解析】,先安排复习节的科目,然后安排其余科目,由此计算出不同的复习安排方法数.【详解】第步,门科目选门,安排节课,方法数有种,第步,安排其余科目,每门科目节课,方法数有种,所以不同的复习安排方法有种.故选:C12、C【解析】根据抛物线的概念,可得准线方程为二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求出圆锥轴截面顶角大小,判断并求出所求面积最大值【详解】如图,是圆锥轴截面,是一条母线,设轴截面顶角为,因为圆锥的高为1,底面半径为,所以,,所以,,设圆锥母线长为,则,截面的面积为,因为,所以时,故答案为:214、【解析】对求导,由题设有恒成立,再利用导数求的最小值,即可求a的范围.【详解】由题设,,又在R上的单调递增函数,∴恒成立,令,则,∴当时,则递减;当时,则递增.∴,故.故答案为:.15、2【解析】根据已知条件,结合抛物线的定义,即可求解【详解】解:∵抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,∴由抛物线的定义可得,,解得p=2故答案为:216、①【解析】根据椭圆方程的结构特征可判断①;注意到分式不等式分母不等于0可判断②;由全称命题的否定可判断③;根据复合命题的真假可判断④;由直线垂直的充要条件可判断⑤.【详解】①中,当时,方程为,表示圆,若方程表示椭圆,则,解得或,故①正确;②中,,故为:,而,故②不正确;③中,“,”的否定应为“,”,故③不正确;④中,若命题“”为假命题,有可能为真或为假,故④不正确;⑤中,,解得或,故是直线:和直线:垂直的充分不必要条件,故⑤不正确.故答案为:①三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)单调递减区间为;(Ⅱ).【解析】(Ⅰ)求函数的导函数,求的区间即为所求减区间;(Ⅱ)化简不等式,变形为,即求,令,求的导函数判断的单调性求出最小值,可求出的范围.【详解】(Ⅰ)由题可知.令,得,从而,∴的单调递减区间为.(Ⅱ)由可得,即当时,恒成立.设,则.令,则当时,.∴当时,单调递增,,则当时,,单调递减;当时,,单调递增.∴,∴.【点睛】思路点睛:在函数中,恒成立问题,可选择参变分离的方法,分离出参数转化为或,转化为求函数的最值求出的范围.18、(1)(2)极大值为12,极小值-15【解析】(1)利用导数的几何意义求解即可.(2)利用导数求解极值即可.【小问1详解】,,切点为,故切线方程为,即;【小问2详解】令,得或列表:-12+0-0+单调递增12单调递减-15单调递增函数的极大值为,函数的极小值为.19、(1)12(2)18【解析】(1)根据已知的,利用等差数列的通项公式和前n项和公式即可列式求解;(2)由第(1)问中求解出的的通项公式,要求前12项绝对值的和,可以发现,该数列前6项为正项,后6项为负项,因此在算和的时候,后6项和可以取原通项公式的相反数即可计算,即为,然后再加上前6项和,即为要求的前12项绝对值的和.【小问1详解】由题意可得,在等差数列中,已知公差,前项和所以,解之得,所以n=12【小问2详解】由(1)可知数列{an}的通项公式为,所以即20、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.21、(1)(2)【解析】(1)由已知及离心率公式直接计算;(2)设直线方程为,联立方程组可得中点及中垂线方程,根据三角形面积可得的值.【小问1详解】解:由已知得,,所以,,所以所求双曲线方程为.【小问2详解】解:设直线的方程为,点,联立整理得.(*
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 精准掌握2025年物理考试试题及答案
- 新能源汽车动力电池技术题目及答案
- 家具设计的市场战略考虑试题及答案
- 最难智商测试题及答案
- 家具行业多元化设计探讨试题及答案
- 教师教书育人反思与策略试题及答案
- 施工图识读与分析试题及答案
- 环保宣传面试真题及答案
- 2025南航招聘空姐面试常见问题及答案
- 城市轨道交通建设规划与环境保护措施研究报告
- 2《归去来兮辞并序》公开课一等奖创新教学设计统编版高中语文选择性必修下册
- 法理斗争1全文
- 医疗美容诊所规章制度上墙
- 2024年山东省青岛市城阳区中考生物模拟试卷
- 汽车机械式变速器分类的术语及定义
- 24春国家开放大学《建筑测量》形考任务实验1-6参考答案
- 云南省劳务派遣劳动合同书
- 瑜伽与冥想练习
- 心脏介入术后穿刺部位并发症的预防及护理讲解
- 邻近铁路营业线施工安全监测技术规程 (TB 10314-2021)
- 智能化屠宰场建设方案设计
评论
0/150
提交评论