2024届四川省石室中学高二数学第一学期期末检测模拟试题含解析_第1页
2024届四川省石室中学高二数学第一学期期末检测模拟试题含解析_第2页
2024届四川省石室中学高二数学第一学期期末检测模拟试题含解析_第3页
2024届四川省石室中学高二数学第一学期期末检测模拟试题含解析_第4页
2024届四川省石室中学高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省石室中学高二数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则曲线在点处的切线的倾斜角是()A. B.C. D.2.已知函数,当时,函数在,上均为增函数,则的取值范围是A. B.C. D.3.函数有两个不同的零点,则实数的取值范围是()A. B.C. D.4.设正数数列的前项和为,数列的前项积为,且,则()A. B.C. D.5.已知全集,,()A. B.C. D.6.若数列满足,,则数列的通项公式为()A. B.C. D.7.已知事件A,B相互独立,,则()A.0.24 B.0.8C.0.3 D.0.168.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.29.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.10.攒(cuán)尖是我国古代建筑中屋顶的一种结构样式,多见于亭阁或园林式建筑.下图是一顶圆形攒尖,其屋顶可近似看作一个圆锥,其轴截面(过圆锥轴的截面)是底边长为,顶角为的等腰三角形,则该屋顶的面积约为()A. B.C. D.11.一辆汽车做直线运动,位移与时间的关系为,若汽车在时的瞬时速度为12,则()A. B.C.2 D.312.已知数列的通项公式为,且数列是递增数列,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列,的前n项和分别为,若,则=______14.秦九韶出生于普州(今资阳市安岳县),是我国南宋时期伟大的数学家,他创立的秦九韶算法历来为人称道,其本质是将一个次多项式写成个一次式相组合的形式,如可将写成,由此可得__________15.若函数恰有两个极值点,则k的取值范围是______16.已知,为双曲线的左、右焦点,过作的垂线分别交双曲线的左、右两支于B,C两点(如图).若,则双曲线的渐近线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.18.(12分)已知,,函数,直线是函数图象的一条对称轴(1)求函数的解析式及单调递增区间;(2)若,,的面积为,求的周长19.(12分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项20.(12分)△ABC的三个顶点分别为(1)求△ABC的外接圆M的方程;(2)设直线与圆M交于两点,求|PQ|的值21.(12分)阿基米德(公元前年—公元前年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系中,椭圆:的面积为,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆的标准方程;(2)过点的直线与交于不同的两点,求面积的最大值.22.(10分)物联网(Internetofthings)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库存储货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元)与仓库到车站的距离x(单位:千米)之间的关系为,每月库存货物费(单位:万元)与x之间的关系为:;若在距离车站11.5千米建仓库,则和分别为4万元和23万元.(1)求的值;(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据导数的概念可得,再利用导数的几何意义即可求解.【详解】因为,所以,则曲线在点处的切线斜率为,故所求切线的倾斜角为.故选:C2、A【解析】由,函数在上均为增函数,恒成立,,设,则,又设,则满足线性约束条件,画出可行域如图所示,由图象可知在点取最大值为,在点取最小值.则的取值范围是,故答案选A考点:利用导数研究函数的性质,简单的线性规划3、B【解析】方程有两个根,转化为求函数的单调性与极值【详解】函数定义域是,有两个零点,即有两个不等实根,即有两个不等实根设,则,时,,递减,时,,递增,极小值=,而时,,时,,所以故选:B4、B【解析】当可求得;当时,可证得数列为等差数列,利用等差数列通项公式可推导得到,由求得后,利用可求得结果.【详解】当时,,解得:;当时,由得:,即,,数列是以为首项,为公差的等差数列,,解得:,,经检验:满足,,故选:B.5、C【解析】根据条件可得,则,结合条件即可得答案.【详解】因,所以,则,又,所以,即.故选:C6、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B7、B【解析】利用事件独立性的概率乘法公式及条件概率公式进行求解.【详解】因为事件A,B相互独立,所以,所以故选:B8、A【解析】根据正态曲线的对称性即可求得答案.【详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.9、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B10、B【解析】由轴截面三角形,根据已知可得圆锥底面半径和母线长,然后可解.【详解】轴截面如图,其中,,所以,所以,所以圆锥的侧面积.故选:B11、D【解析】首先求出函数的导函数,依题意可得,即可解得;【详解】解:因为,所以又汽车在时的瞬时速度为12,即即,解得故选:D【点睛】本题考查导数在物理中的应用,属于基础题.12、C【解析】利用递增数列的定义即可.【详解】由,∴,即是小于2n+1的最小值,∴,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用等差数列的性质和等差数列的前项和公式可得,再令即可求解.【详解】由等差数列的性质和等差数列的前项和公式可得:因为,故答案为:【点睛】关键点点睛:本题解题的关键是利用等差数列的性质可得,再转化为前项和公式的形式,代入的值即可.14、【解析】利用代入法进行求解即可.【详解】故答案为:15、【解析】求导得有两个极值点等价于函数有一个不等于1的零点,分离参数得,令,利用导数研究的单调性并作出的图象,根据图象即可得出k的取值范围【详解】函数的定义域为,,令,解得或,若函数有2个极值点,则函数与图象在上恰有1个横坐标不为1的交点,而,令,令或,故在和上单调递减,在上单调递增,又,如图所示,由图可得.故答案为:16、【解析】根据双曲线的定义先计算出,,注意到图中渐近线,于是利用两种不同的表示法列方程求解.【详解】,则,由双曲线的定义及在右支上,,又在左支上,则,则,在中,由余弦定理,,而图中渐近线,于是,得,于是,不妨令,化简得,解得,渐近线就为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据条件求出即可;(2),然后利用等差数列的求和公式求出答案即可.【详解】(1)且,,(2)18、(1),单调递增区间为.(2)【解析】(1)先利用向量数量积运算、二倍角公式、辅助角公式求出,再求单增区间;(2)利用面积公式求出,再利用余弦定理求出,即可求出周长.小问1详解】已知,,函数,所以.因为直线是函数图象的一条对称轴,所以,所以,又,所以当k=0时,符合题意,此时要求的单调递增区间,只需,解得:,所以的单调递增区间为.【小问2详解】由于,所以,所以.因为,所以.因为的面积为,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周长.19、(1)10;(2);【解析】(1)利用二项式系数的性质即可求出的值;(2)求出展开式的通项公式,然后令的指数为即可求解【小问1详解】∵的展开式中,只有第6项的二项式系数最大,∴展开后一共有11项,则,解得;【小问2详解】二项式的展开式的通项公式为,令,解得,∴展开式中含的项为20、(1);(2).【解析】(1)设出圆的一般方程,根据的坐标满足圆方程,待定系数,即可求得圆方程;(2)根据(1)中所求圆方程,结合弦长公式,即可求得结果.【小问1详解】设圆M的方程为,因为都在圆上,则,解得,故圆M的方程为,也即.【小问2详解】由(1)可知,圆M的圆心坐标为,半径为,点M到直线的距离故.21、(1);(2).【解析】(1)根据题意计算得到,得到椭圆方程.(2)设直线的方程为,联立方程,根据韦达定理得到,,表示出,解得答案.【详解】(1)依题意有解得所以椭圆的标准方程是.(2)由题意直线的斜率不能为,设直线的方程为,由方程组得,设,,所以,,所以,所以,令(),则,,因为在上单调递增,所以当,即时,面积取得最大值为.【点睛】本题考查了椭圆方程,椭圆内三角形面积的最值问题,意在考查学生的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论