




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省红河州泸源中学数学高二上期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是双曲线的左焦点,为右顶点,是双曲线上的点,轴,若,则双曲线的离心率为()A. B.C. D.2.下列函数求导运算正确的个数为()①;②;③;④.A.1 B.2C.3 D.43.《周髀算经》中有这样一个问题:从冬至起,接下来依次是小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种共十二个节气,其日影长依次成等差数列,其中大寒、惊蛰、谷雨三个节气的日影长之和为25.5尺,且前九个节气日影长之和为85.5尺,则立春的日影长为()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺4.已知等差数列的前n项和为,,,若(),则n的值为()A.15 B.14C.13 D.125.设函数在上单调递减,则实数的取值范围是()A. B.C. D.6.小方每次投篮的命中率为,假设每次投篮相互独立,则他连续投篮2次,恰有1次命中的概率为()A. B.C. D.7.已知抛物线,过点与抛物线C有且只有一个交点的直线有()条A.0 B.1C.2 D.38.双曲线型自然通风塔外形是双曲线的一部分绕其虚轴旋转所成的曲面,如图所示,它的最小半径为米,上口半径为米,下口半径为米,高为24米,则该双曲线的离心率为()A.2 B.C. D.9.某市统计局网站公布了2017年至2020年该市政府部门网站的每年的两项访问量,数据如下:年度项目2017年2018年2019年2020年独立用户访问总量(单位:个)2512573924400060989网站总访问量(单位:次)23435370348194783219288下列表述中错误的是()A.2017年至2018年,两项访问量都增长幅度较大;B.2018年至2019年,两项访问量都有所回落;C.2019年至2020年,两项访问量都又有所增长;D.从数据可以看出,该市政府部门网站的两项访问量都呈逐年增长态势10.已知椭圆C:的两个焦点分别为,,椭圆C上有一点P,则的周长为()A.8 B.10C. D.1211.已知是定义在上的函数,其导函数为,且,且,则不等式的解集为()A. B.C. D.12.已知为等差数列,为公差,若成等比数列,且,则数列的前项和为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知AB,CD分别是圆柱上、下底面圆的直径,且,若该圆柱的底面圆直径是其母线长的2倍,则异面直线AC与BD所成角的余弦值为______14.双曲线的实轴长为______.15.已知等差数列的前n项和为公差为d,且满足则的取值范围是_____________,的取值范围是_____________16.曲线在点处的切线方程为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦点与双曲线的焦点相同,且D的离心率为.(1)求C与D的方程;(2)若,直线与C交于A,B两点,且直线PA,PB的斜率都存在.①求m的取值范围.②试问这直线PA,PB的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.18.(12分)已知抛物线经过点.(Ⅰ)求抛物线C的方程及其焦点坐标;(Ⅱ)过抛物线C上一动点P作圆的两条切线,切点分别为A,B,求四边形面积的最小值.19.(12分)如图,AC是圆O的直径,B是圆O上异于A,C的一点,平面ABC,点E在棱PB上,且,,.(1)求证:;(2)当三棱锥的体积最大时,求二面角的余弦值.20.(12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程21.(12分)已知圆.(1)若不过原点的直线与圆相切,且直线在两坐标轴上的截距相等,求直线的方程;(2)求与圆和直线都相切的最小圆的方程.22.(10分)如图所示,、分别为椭圆的左、右焦点,A,B为两个顶点,已知椭圆C上的点到、两点的距离之和为4.(1)求a的值和椭圆C的方程;(2)过椭圆C的焦点作AB的平行线交椭圆于P,Q,求的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据条件可得与,进而可得,,的关系,可得解.【详解】由已知得,设点,由轴,则,代入双曲线方程可得,即,又,所以,即,整理可得,故,解得或(舍),故选:C.2、A【解析】根据导数的运算法则和导数的基本公式计算后即可判断【详解】解:①,故错误;②,故正确;③,故错误;④,故错误.所以求导运算正确的个数为1.故选:A.3、B【解析】设影长依次成等差数列,公差为,根据题意结合等差数列的通项公式及前项和公式求出首项和公差,即可得出答案.【详解】解:设影长依次成等差数列,公差为,则,前9项之和,即,解得,所以立春的日影长为.故选:B.4、B【解析】由已知条件列方程组求出,再由列方程求n的值【详解】设等差数列的公差为,则由,,得,解得,因为,所以,即,解得或(舍去),故选:B5、B【解析】分析可知,对任意的恒成立,由参变量分离法可得出,求出在时的取值范围,即可得出实数的取值范围.【详解】因为,则,由题意可知对任意的恒成立,则对任意的恒成立,当时,,.故选:B.6、A【解析】先弄清连续投篮2次,恰有1次命中的情况有两种,它们是互斥关系,因此根据相互独立事件以及互斥事件的概率计算公式进行求解.【详解】由题意知,他连续投篮2次,有两种互斥的情况,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率为,故选:A.7、D【解析】设出过点与抛物线C只有一个公共点且斜率存在的直线方程,再与的方程联立借助判别式计算、判断作答.【详解】抛物线的对称轴为y轴,直线过点P且与y轴平行,它与抛物线C只有一个公共点,设过点与抛物线C只有一个公共点且斜率存在的直线方程为:,由消去y并整理得:,则,解得或,因此,过点与抛物线C相切的直线有两条,相交且只有一个公共点的直线有一条,所以过点与抛物线C有且只有一个交点的直线有3条.故选:D8、A【解析】以的中点О为坐标原点,建立平面直角坐标系,设双曲线的方程为,设,,代入双曲线的方程,求得,得到,进而求得双曲线的离心率.【详解】以的中点О为坐标原点,建立如图所示的平面直角坐标系,则,设双曲线的方程为,则,可设,,又由,在双曲线上,所以,解得,,即,所以该双曲线的离心率为.故选:A.第II卷9、D【解析】根据表格数据,结合各选项的描述判断正误即可.【详解】A:2017年至2018年,两项访问量分别增长、,显然增长幅度相较于后两年是最大的,正确;B:2018年至2019年,两项访问量相较于2017年至2018年都有回落,正确;C:2019年至2020年,两项访问量分别增长、,正确;D:由B分析知,该市政府部门网站的两项访问量在2018年至2019年有回落,而不是逐年增长态势,错误.故选:D.10、B【解析】根据椭圆的定义可得:,所以的周长等于【详解】因为,,所以,故的周长为故选:B11、B【解析】令,再结合,和已知条件将问题转化为,最后结合单调性求解即可.【详解】解:令,则,因为,所以,即函数为上的增函数,因为,不等式可化为,所以,故不等式的解集为故选:B12、C【解析】先利用已知条件得到,解出公差,得到通项公式,再代入数列,利用裂项相消法求和即可.【详解】因为成等比数列,,故,即,故,解得或(舍去),故,即,故的前项和为:.故选:C.【点睛】方法点睛:数列求和的方法:(1)倒序相加法:如果一个数列的前项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】利用空间向量夹角公式进行求解即可.【详解】取CD的中点O,以O为原点,以CD所在直线为x轴,以底面内过点O且与CD垂直的直线为y轴,以过点O且与底面垂直的直线为z轴,建立如图所示的空间直角坐标系设,则,,,,,,所以,所以异面直线AC与BD所成角的余弦值为故答案为:14、4【解析】根据双曲线标准方程的特征即可求解.【详解】由题可知.故答案为:4.15、①.②.【解析】通过判断出,进而将化为基本量求得答案;然后用基本量将化简,进而通过的范围求得答案.【详解】由,,,故答案为:16、【解析】求导,求出切线斜率,用点斜式写出直线方程,化简即可.【详解】,曲线在点处的切线方程为,即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)C:;D:;(2)①且;②见解析.【解析】(1)根据D的离心率为,求出从而求出双曲线的焦点,再由椭圆的焦点与双曲线的焦点相同,即可求出,即可求出C与D的方程;(2)①根据题意容易得出,然后联立方程,消元,利用即可求出m的取值范围;②设,由①得:,计算出,判断其是否为定值即可.【详解】解:(1)因为D的离心率为,即,解得:,所以D的方程为:;焦点坐标为,又因椭圆的焦点与双曲线的焦点相同,所以,所以,所以C的方程为:;(2)①如图:因为直线与C交于A,B两点,且直线PA,PB的斜率都存在,所以,联立,消化简得:,所以,解得,所以且;②设,由①得:,,所以,故直线PA,PB的斜率之积不是是定值.【点睛】本题考查了求椭圆与双曲线的方程、直线与椭圆的位置关系及椭圆中跟定直有关的问题,难度较大.18、(1),;(2).【解析】(1)将点代入抛物线方程求解出的值,则抛物线方程和焦点坐标可知;(2)设出点坐标,根据切线长相等以及切线垂直于半径将四边形的面积表示为,然后根据三角形面积公式将其表示为,根据点到点的距离公式表示出,然后结合二次函数的性质求解出四边形面积的最小值.【详解】(1)因为抛物线过点,所以,所以,所以抛物线的方程为:,焦点坐标为,即;(2)设,因为为圆的切线,所以,且,所以,又因为,所以,当时,四边形的面积有最小值且最小值为.【点睛】关键点点睛:解答本题的关键在于根据圆的切线的性质将四边形面积转化为三角形的面积,再通过三角形的面积公式将其转化为二次函数求最值的问题模型,对于转化的技巧要求较高.19、(1)证明见解析(2)【解析】(1)由圆的性质可得,再由线面垂直的性质可得,从而由线面垂直的判定定理可得平面PAB,所以得,再结合已知条件可得平面PBC,由线面垂直的性质可得结论;(2)由已知条件结合基本不等式可得当三棱锥的体积最大时,是等腰直角三角形,,从而以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,利用空间向量求解.【小问1详解】证明:因为AC是圆O的直径,点B是圆O上不与A,C重合的一个动点,所以.因为平面ABC,平面ABC,所以.因为,且AB,平面PAB,所以平面PAB.因为平面PAB,所以.因为,,且BC,平面PBC,所以平面PBC.因为平面PBC,所以.【小问2详解】解:因为,,所以,所以三棱锥的体积,(当且仅当“”时等号成立).所以当三棱锥的体积最大时,是等腰直角三角形,.所以以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,则,,,.因为∽,所以,因为,,所以,所以,.设向量为平面的一个法向量,则即令得,.向量为平面ABC的一个法向量,.因为二面角是锐角,所以二面角的余弦值为.20、(1)1;(2)y=x+7【解析】(1)设A(x1,y1),B(x2,y2),直线AB的斜率k==,代入即可求得斜率;(2)由(1)中直线AB的斜率,根据导数的几何意义求得M点坐标,设直线AB的方程为y=x+m,与抛物线联立,求得根,结合弦长公式求得AB,由知,|AB|=2|MN|,从而求得参数m.【详解】解:(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k===1(2)由y=,得y′=设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1)设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盐城幼师考编试题及答案
- Z世代消费心理洞察:2025年新消费品牌情感价值塑造策略报告
- 天然气勘探开发技术创新与市场前景分析报告
- 能源与资源行业:能源行业供应链风险管理研究报告
- 班组自查报告
- 新消法考试题及答案
- 江苏省苏州市昆山市、太仓市2025年第二学期普通高中半期考试初三数学试题含解析
- 四川省广元市重点中学2024-2025学年初三(普通班)下学期期末考试生物试题试卷含解析
- 安全管理与施工效率的关系试题及答案
- 木工画图考试题及答案
- 基于深度学习的图像修复算法研究
- 隐私与保密信息管理制度
- 《隧道防火保护板系统技术规程》
- 2025年安徽黄山旅游集团招聘笔试参考题库含答案解析
- 中铜国际贸易集团有限公司招聘笔试冲刺题2025
- 商演服务合同
- 《建筑采光分析》课件
- 海洋机器人与人工智能知到智慧树章节测试课后答案2024年秋哈尔滨工程大学
- 上海市境内旅游合同 示范文本(2013版)
- 钢构制品加工协议
- “煎炒烹炸”与中药疗效(安徽中医药大学)知道智慧树章节答案
评论
0/150
提交评论