




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省宁波市“十校”高二数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设拋物线的焦点为F,准线为l,P为拋物线上一点,,A为垂足.如果直线AF的斜率是,那么()A B.C.16 D.82.已知三棱锥OABC,点M,N分别为AB,OC的中点,且,用表示,则等于()A. B.C. D.3.若圆与圆外切,则()A. B.C. D.4.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则5.某班级从5名同学中挑出2名同学进行大扫除,若小王和小张在这5名同学之中,则小王和小张都没有被挑出的概率为()A. B.C. D.6.已知等边三角形的一个顶点在椭圆E上,另两个顶点位于E的两个焦点处,则E的离心率为()A. B.C. D.7.已知数列为等差数列,则下列数列一定为等比数列的是()A. B.C. D.8.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,且则的实轴长为A.1 B.2C.4 D.89.椭圆与(0<k<9)的()A.长轴的长相等B.短轴的长相等C.离心率相等D.焦距相等10.如果命题为真命题,为假命题,那么()A.命题,都是真命题 B.命题,都是假命题C.命题,至少有一个是真命题 D.命题,只有一个是真命题11.“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2021这2020个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为()A. B.C. D.12.某四面体的三视图如图所示,该四面体的体积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足0,,则数列的通项公式为____,则数列的前项和______14.若曲线在处的切线平行于x轴,则___________.15.已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为,则,若把它推广到空间长方体中,体对角线与平面,平面,平面所成的角分别为,则可以类比得到的结论为___________________.16.已知双曲线:,斜率为的直线与E的左右两支分别交于A,B两点,点P的坐标为,直线AP交E于另一点C,直线BP交E于另一点D.若直线CD的斜率为,则E的离心率为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7门科目中自选3门参加考试.下面是某校高一200名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示(1)求频率分布直方图中的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率18.(12分)2017年厦门金砖会晤期间产生碳排放3095吨.2018年起厦门市政府在下潭尾湿地生态公园通过种植红树林的方式中和会晤期间产生的碳排放,拟用20年时间将碳排放全部吸收,实现“零碳排放”目标,向世界传递低碳,环保办会的积极信号,践行金砖国家倡导的可持续发展精神据研究估算,红树林的年碳吸收量随着林龄每年递增2%,2018年公园已有的红树林年碳吸收量为130吨,如果从2019年起每年新种植红树林若干亩,新种植的红树林当年的年碳吸收量为m()吨.2018年起,红树林的年碳吸收量依次记,,,…(1)①写出一个递推公式,表示与之间的关系;②证明:是等比数列,并求的通项公式;(2)为了提前5年实现厦门会晤“零碳排放”的目标,m的最小值为多少?参考数据:,,19.(12分)已知圆与直线相切(1)求圆O的标准方程;(2)若线段AB的端点A在圆O上运动,端点B的坐标是,求线段AB的中点M的轨迹方程20.(12分)已知等比数列满足(1)求的通项公式;(2)记的前n项和为,证明:,,成等差数列21.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.22.(10分)已知函数.(1)求函数的极值;(2)是否存在实数,,,对任意的正数,都有成立?若存在,求出,,的所有值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题可得方程,进而可得点坐标及点坐标,利用抛物线定义即求【详解】∵抛物线方程为,∴焦点F(2,0),准线l方程为x=−2,∵直线AF的斜率为,直线AF的方程为,由,可得,∵PA⊥l,A为垂足,∴P点纵坐标为,代入抛物线方程,得P点坐标为,∴.故选:D.2、D【解析】根据空间向量的加法、减法和数乘运算可得结果.【详解】.故选:D3、C【解析】求得两圆的圆心坐标和半径,结合两圆相外切,列出方程,即可求解.【详解】由题意,圆与圆可得,,因为两圆相外切,可得,解得故选:C.4、C【解析】先举例说明ABD不成立,再根据不等式性质说明C成立.【详解】当时,满足,但不成立,所以A错;当时,满足,但不成立,所以B错;当时,满足,但不成立,所以D错;因为所以,又,因此同向不等式相加得,即C对;故选:C【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.5、B【解析】记另3名同学分别为a,b,c,应用列举法求古典概型的概率即可.【详解】记另3名同学分别为a,b,c,所以基本事件为,,(a,小王),(a,小张),,(b,小王),(b,小张),(c,小王),(c,小张),(小王,小张),共10种小王和小张都没有被挑出包括的基本事件为,,,共3种,综上,小王和小张都没有挑出的概率为故选:B.6、B【解析】根据已知条件求得的关系式,从而求得椭圆的离心率.【详解】依题意可知,所以.故选:B7、A【解析】根据等比数列的定义判断【详解】设的公差是,即,显然,且是常数,是等比数列,若中一个为1,则,则不是等比数列,只要,,都不可能是等比数列,如,,故选:A8、B【解析】设等轴双曲线的方程为抛物线,抛物线准线方程为设等轴双曲线与抛物线的准线的两个交点,,则,将,代入,得等轴双曲线的方程为的实轴长为故选9、D【解析】根据椭圆方程求得两个椭圆的,由此确定正确选项.【详解】椭圆与(0<k<9)的焦点分别在x轴和y轴上,前者a2=25,b2=9,则c2=16,后者a2=25-k,b2=9-k,则显然只有D正确故选:D10、D【解析】由命题为真命题,可判断二者至少有一个为真命题,由为假命题,可判断二者至少有一个为假命题,由此可得答案.【详解】命题为真命题,说明二者至少有一个为真命题,为假命题,说明二者至少有一个为假命题,综合上述,可知命题,只有一个是真命题,故选:D11、C【解析】由题设且,应用不等式求的范围,即可确定项数.【详解】由题设,且,所以,可得且.所以此数列的项数为.故选:C12、A【解析】可由三视图还原原几何体,然后根据题意的边角关系,完成体积的求解.【详解】由三视图还原原几何体如图:其中平面,,则该四面体的体积为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】第一空:先构造等比数列求出,即可求出的通项公式;第二空:先求出,令,通过错位相减求出的前项和为,再结合等差数列的求和公式及分组求和即可求解.【详解】第一空:由可得,又,则是以1为首项,2为公比的等比数列,则,则;第二空:,设,前项和为,则,,两式相减得,则,又,则.故答案为:;.14、【解析】求出导函数得到函数在时的导数,由导数值为0求得a的值【详解】由,得,则,∵曲线在点处的切线平行于x轴,∴,即.故答案为:15、【解析】先由线面角的定义得到,再计算的值即可得到结论【详解】在长方体中,连接,在长方体中,平面,所以对角线与平面所成的角为,对角线与平面所成的角为,对角线与平面所成的角为,显然,,,所以,,故答案为:16、【解析】分别设线段的中点,线段的中点,再利用点差法可表示出,由平行关系易知三点共线,从而利用斜率相等的关系构造方程,代入整理可得到关系,利用双曲线得到关于的齐次方程,进而求得离心率.【详解】设,,线段的中点,两式相减得:…①设,,线段的中点同理可得:…②,易知三点共线,将①②代入得:,所以,即,由题意可得,故.∴,即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)=0.005(2)232(3)【解析】(1)由频率和为1列方程求解即可,(2)由于前3组的频率和小于0.6,前4组的频率和大于0.6,所以三科总分成绩的第60百分位数在第4组内,设第60百分位数为,则0.45+0.0125×(−220)=0.6,从而可求得结果,(3)利用列举法求解即可【小问1详解】由(0.002+0.0095+0.011+0.0125+0.0075++0.0025)×20=1,解得=0.005【小问2详解】因为(0.002+0.0095+0.011)×20=0.45<0.6,(0.002+0.0095+0.011+0.0125)×20=0.7>0.6,所以三科总分成绩的第60百分位数在[220,240)内,设第60百分位数为,则0.45+0.0125×(−220)=0.6,解得=232,即第60百分位数为232【小问3详解】将物理、化学、生物、政治、技术5门学科分别记作.则事件A表示小明选中“技术”,则,所以P(A)=18、(1)①;②证明见解析,(2)最少为6.56吨【解析】(1)①根据题意直接写出一个递推公式即可;②要证明是等比数列,只要证明为一个常数即可,求出等比数列的通项公式,即可求出的通项公式;(2)记为数列的前n项和,根据题意求出,利用分组求和法求出数列的前n项和,再令,解之即可得出答案.【小问1详解】解:①依题意得,则,②因为,所以,所以,因为所以数列是等比数列,首项是,公比是1.02,所以,所以;【小问2详解】解:记为数列的前n项和,,依题,所以,所以m最少为6.56吨19、(1)(2)【解析】(1)由圆心到直线的距离等于半径即可求出.(2)由相关点法即可求出轨迹方程.【小问1详解】已知圆与直线相切,所以圆心到直线的距离为半径.所以,所以圆O的标准方程为:【小问2详解】设因为AB的中点是M,则,所以,又因A在圆O上运动,则,所以带入有:,化简得:.线段AB的中点M的轨迹方程为:.20、(1)(2)证明见解析【解析】(1)设等比数列的公比为,根据,求得的值,即可求得数列的通项公式;(2)由等比数列的求和公式求得,得到,,化简得到,即可求解【小问1详解】解:设等比数列的公比为,因为,所以,解得,所以,所以数列的通项公式【小问2详解】解:由(1)可得,,,所以,所以,即,,成等差数列21、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆锥曲线中证明角度相关的问题,往往需要转化为斜率或向量进行求解.22、(1)极小值为:,无极大值(2),,【解析】(1)先求导求单调性,再判断极值点求极值即可;(2)易知,只需要为函数和的公切线即可,求出公切线,代入后分别证明和成立即可.【小问1详解】由题意知:,令,解得,令,解得,所以函数在单调递增,在单调递减,所以为函数的极小值点,即极小值为:,无极大值.【小问2详解】设,易知,所以点是和的公共点,要使成立,只需要为函数和的公切线即可,由(1)知,,所以在点处的切线为:,同理可得在点处的切线为:,由题意知为同一条直线,所以解得,即等价于;下面证明这个式子成立:首先证明等价于,设,所以,恒成立,所以单调递增,易知,所以当时,,当时,,所以在单调递减,在单调递增,所以,故不等式成立,即成立;再证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 6730.90-2025铁矿石金、银、铂、钯含量的测定电感耦合等离子体质谱法
- 材料疲劳裂纹萌生研究进展重点基础知识点
- 物业高层火灾应急预案(3篇)
- 化工厂消防火灾应急预案(3篇)
- 總体经济政策的目标与措施试题及答案
- 儿科发生火灾的应急预案(3篇)
- 2025年软件设计师考试的自我激励策略试题及答案
- 行政管理分析试题及答案解析
- 火灾及处突应急预案(3篇)
- 2025年软考网络管理员科研能力试题及答案
- 中医理疗合同范本
- 《经典常谈》各章测试题
- 职业教育教师数智素养指标体系构建
- 《燕京啤酒公司基于杜邦分析法的企业财务能力分析案例》15000字
- 快速康复理念与围手术期护理
- 2025年烟台经济技术开发区社区工作者招考高频重点提升(共500题)附带答案详解
- 市政道路工程冬季施工方案及措施
- 2023年山东省济宁市中考历史真题(原卷版)
- 电机控制与调速技术课件 项目四 步进电动机控制与调速技术
- 2024版保险合同法律适用与条款解释3篇
- 【MOOC】人格与精神障碍-学做自己的心理医生-暨南大学 中国大学慕课MOOC答案
评论
0/150
提交评论