2024届浙江省绍兴市新昌中学高二数学第一学期期末经典模拟试题含解析_第1页
2024届浙江省绍兴市新昌中学高二数学第一学期期末经典模拟试题含解析_第2页
2024届浙江省绍兴市新昌中学高二数学第一学期期末经典模拟试题含解析_第3页
2024届浙江省绍兴市新昌中学高二数学第一学期期末经典模拟试题含解析_第4页
2024届浙江省绍兴市新昌中学高二数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省绍兴市新昌中学高二数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的函数满足下列三个条件:①当时,;②的图象关于轴对称;③,都有.则、、的大小关系是()A. B.C. D.2.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.33.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑(nào).如图所示的三棱锥为一鳖臑,且平面,平面,若,,,则()A. B.C. D.4.在长方体中,,,分别是棱,的中点,则异面直线,的夹角为()A. B.C. D.5.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面6.已知,则点到平面的距离为()A. B.C. D.7.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种8.已知数列满足,,.设,若对于,都有恒成立,则最大值为A.3 B.4C.7 D.99.已知函数,,若对于任意的,存在唯一的,使得,则实数a的取值范围是()A(e,4) B.(e,4]C.(e,4) D.(,4]10.下列命题中,正确的是()A.若a>b,c>d,则ac>bd B.若ac>bc,则a<bC.若a>b,c>d,则a﹣c>b﹣d D.若,则a<b11.在等差数列中,,则()A.9 B.6C.3 D.112.已知圆的圆心到直线的距离为,则圆与圆的位置关系是()A.相交 B.内切C.外切 D.外离二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线:()的焦点到准线的距离为4,过点的直线与抛物线交于,两点,若,则______14.设在中,角A、B、C所对的边分别为a、b、c,从下列四个条件:①;②;③;④中选出三个条件,能使满足所选条件的存在且唯一的所有c的值为______.15.已知椭圆与坐标轴依次交于A,B,C,D四点,则四边形ABCD面积为_____.16.数列的前n项和满足:,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)阅读本题后面有待完善的问题,在下列三个条件:①,②,③中选择一个作为条件,补充在题中横线处,使问题完善,并解答你构造的问题.(如果选择多个关系并分别解答,在不出现逻辑混乱的情况下,按照第一个解答给分).问题:已知命题,,命题___________,若是的充分不必要条件,求实数的取值范围.18.(12分)已知是公比不为1的等比数列,,且为的等差中项.(1)求的公比;(2)求的通项公式及前n项和.19.(12分)函数(1)求在上的单调区间;(2)当时,不等式恒成立,求实数a的取值范围20.(12分)已知圆:,定点,Q为圆上的一动点,点P在半径CQ上,且,设点P的轨迹为曲线E.(1)求曲线E的方程;(2)过点的直线交曲线E于A,B两点,过点H与AB垂直的直线与x轴交于点N,当取最大值时,求直线AB的方程.21.(12分)已知平面内两点.(1)求过点且与直线平行的直线的方程;(2)求线段的垂直平分线方程.22.(10分)已知椭圆的离心率是,且过点.直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的面积的最大值;(Ⅲ)设直线,分别与轴交于点,.判断,大小关系,并加以证明.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】推导出函数为偶函数,结合已知条件可得出,,,利用导数可知函数在上为减函数,由此可得出、、的大小关系.【详解】因为函数的图象关于轴对称,则,故,,又因为,都有,所以,,所以,,,,因为当时,,,当且仅当时,等号成立,且不恒为零,故函数在上为减函数,因为,则,故.故选:A.2、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.3、A【解析】根据平面,平面求解.【详解】因为平面,平面,所以,又,,,所以,所以,故选:A4、C【解析】设出长度,建立空间直角坐标系,根据向量求异面直线所成角即可.【详解】如下图所示,以,,所在直线方向,,轴,建立空间直角坐标系,设,,,,,,所以,,设异面直线,的夹角为,所以,所以,即异面直线,的夹角为.故选:C.5、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D6、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A7、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D8、A【解析】整理数列的通项公式有:,结合可得数列是首项为,公比为的等比数列,则,,原问题即:恒成立,当时,,即>3,综上可得:的最大值为3.本题选择A选项点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项9、B【解析】结合导数和二次函数的性质可求出和的值域,结合已知条件可得,,从而可求出实数a的取值范围.【详解】解:g(x)=x2ex的导函数为g′(x)=2xex+x2ex=x(x+2)ex,当时,,由时,,时,,可得g(x)在[–1,0]上单调递减,在(0,1]上单调递增,故g(x)在[–1,1]上的最小值为g(0)=0,最大值为g(1)=e,所以对于任意的,.因为开口向下,对称轴为轴,又,所以当时,,当时,,则函数在[,2]上的值域为[a–4,a],且函数f(x)在,图象关于轴对称,在(,2]上,函数单调递减.由题意,得,,可得a–4≤0<e<,解得ea≤4故选:B【点睛】本题考查了利用导数求函数的最值,考查了二次函数的性质,属于中档题.本题的难点是这一条件的转化.10、D【解析】运用不等式性质,结合特殊值法,对选项注逐一判断正误即可.【详解】选项A中,若,时,则成立,否则,若,则,显然错误,故选项A错误;选项B中,若,,则能推出,否则,若,则,显然错误,故选项B错误;选项C中,若,则,显然错误,故选项C错误;选项D中,若,显然,由不等式性质知不等式两边同乘以一个正数,不等式不变号,即.故选:D11、A【解析】直接由等差中项得到结果.详解】由得.故选:A.12、B【解析】求出两圆的圆心与半径,根据两圆的位置关系的判定即可求解.【详解】已知圆的圆心到直线的距离,即,解得或,因为,所以,圆的圆心的坐标为,半径,将圆化为标准方程为,其圆心的坐标为,半径,圆心距,两圆内切,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、15【解析】易得抛物线方程为,根据,求得点P的坐标,进而得到直线l的方程,与抛物线方程联立,再利用抛物线定义求解.【详解】解:因为抛物线的焦点到准线的距离为4,所以,则抛物线:,设点的坐标为,的坐标为,因为,所以,则,则,所以直线的方程为,代入抛物线方程可得,故,则,所以故答案为:1514、,##,【解析】由①②结合正弦定理可求出,但是角不唯一,故所选条件中不能同时有①②,只能是①③④或②③④,若选①③④,结合余弦定理可求,若选②③④,结合正弦定理即可求解【详解】由①②结合正弦定理,所以,此时角不唯一,所以故所选条件中不能同时有①②,所以只能是①③④或②③④,若选①③④,即,,,由余弦定理可得,解得,若选②③④,即,,,因为,,所以,由正弦定理得,,故答案为:,15、【解析】根据椭圆的方程,求得顶点的坐标,结合菱形的面积公式,即可求解.【详解】由题意,椭圆,可得,可得,所以椭圆与坐标轴的交点分别为,此时构成的四边形为菱形,则面积为.故答案为:.16、【解析】利用“当时,;当时,"即可得出.【详解】当时,当时,,不适合上式,数列的通项公式.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】分别在、和的情况下得命题对应的集合;选条件后可求得命题对应的集合;根据充分不必要条件的定义可知,分别在、和的情况下得到结果.【详解】由得:,当时,不等式解集;当时,不等式解集为;当时,不等式解集为;是的充分不必要条件,命题对应集合是命题对应集合的真子集,即;若选条件①:由得:,;若选条件②:由得:,解得:,;若选条件③:由得:,解得:,;当时,,符合题意;当时,由知:,;当时,由知:,;综上所述:,即实数的取值范围为.18、(1)(2),【解析】(1)设数列公比为,根据列出方程,即可求解;(2):由(1)得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设数列公比为,因为为的等差中项,可得,即,即,解得或(舍去),所以等比数列的公比为.【小问2详解】解:由(1)知且,可得,所以.19、(1)单调递增区间为;单调递减区间为和(2)【解析】(1)求出,然后可得答案;(2)由条件可得,设,则,然后利用导数可得在上单调递增,,然后分、两种情况讨论求解即可.【小问1详解】由题可得令,得;令,得,所以f(x)的单调递增区间为;单调递减区间为和【小问2详解】由,得,即设,则设,则当时,,,所以所以即在上单调递增,则若,则,所以h(x)在上单调递增所以h(x)≥h(0)=0恒成立,符合题意若a>2,则,必存在正实数,满足:当时,,h(x)单调递减,此时h(x)<h(0)=0,不符合题意综上所述,a的取值范围是20、(1)(2)或【解析】(1)结合已知条件可得到点P在线段QF的垂直平分线上,然后利用椭圆定义即可求解;(2)结合已知条件设出直线的方程,然后联立椭圆方程,利用弦长公式求出,再设出直线NH的方程,求出N点坐标,进而求出,然后表示出,再利用换元法和均值不等式求解即可.【小问1详解】设点的坐标为,∵,∴点P在线段QF垂直平分线上,∴,又∵,∴∴点P在以C,F为焦点的椭圆上,且,∴,∴曲线的方程为:.【小问2详解】设直线AB方程为,,由,解得,,解得,由韦达定理可知,,,∴∵AB与HN垂直,∴直线NH的方程为,令,得,∴,又由,∴,∴设则∴当且仅当即时等号成立,有最大值,此时满足,故,所以直线AB的方程为:,即或.21、(1)(2)【解析】(1)求出直线的斜率,利用点斜式方程求解即可;(2)求出线段的中点坐标,求出斜率然后求解垂直平分线方程.试题解析:(1)∵点∴∴由点斜式得直线的方程(2)∵点∴线段的中点坐标为∵∴线段的垂直平分线的斜率为∴由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论