安徽定远示范高中2023-2024学年高二数学第一学期期末预测试题含解析_第1页
安徽定远示范高中2023-2024学年高二数学第一学期期末预测试题含解析_第2页
安徽定远示范高中2023-2024学年高二数学第一学期期末预测试题含解析_第3页
安徽定远示范高中2023-2024学年高二数学第一学期期末预测试题含解析_第4页
安徽定远示范高中2023-2024学年高二数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽定远示范高中2023-2024学年高二数学第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列中,,,.当时,则n等于()A.2016 B.2017C.2018 D.20192.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或3.若圆与圆相切,则实数a的值为()A.或0 B.0C. D.或4.已知双曲线,过原点作一条倾斜角为的直线分别交双曲线左、右两支于、两点,以线段为直径的圆过右焦点,则双曲线的离心率为().A. B.C. D.5.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆的内接四边形是矩形6.已知是双曲线的左焦点,,是双曲线右支上的动点,则的最小值为()A.9 B.8C.7 D.67.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.8.下列椭圆中,焦点坐标是的是()A. B.C. D.9.已知、分别是椭圆的左、右焦点,A是椭圆上一动点,圆C与的延长线、的延长线以及线段相切,若为其中一个切点,则()A. B.C. D.与2的大小关系不确定10.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.11.若双曲线的两个焦点为,点是上的一点,且,则双曲线的渐近线与轴的夹角的取值范围是()A. B.C. D.12.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支二、填空题:本题共4小题,每小题5分,共20分。13.将参加冬季越野跑的名选手编号为:,采用系统抽样方法抽取一个容量为的样本,把编号分为组后,第一组的到这个编号中随机抽得的号码为,这名选手穿着三种颜色的衣服,从到穿红色衣服,从到穿白色衣服,从到穿黄色衣服,则抽到穿白色衣服的选手人数为__________14.设函数(1)求的最小正周期和的最大值;(2)已知锐角的内角A,B,C对应的边分别为a,b,c,若,且,求的面积.15.双曲线的右顶点为A,右焦点为F,过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则的面积为__________16.已知离心率为,且对称轴都在坐标轴上的双曲线C过点,过双曲线C上任意一点P,向双曲线C的两条渐近线分别引垂线,垂足分别是A,B,点O为坐标原点,则四边形OAPB的面积为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,点.(1)若,半径为的圆过点,且与圆相外切,求圆的方程;(2)若过点的两条直线被圆截得的弦长均为,且与轴分别交于点、,,求.18.(12分)2020年3月20日,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称《意见》),《意见》中确定了劳动教育内容要求,要求普通高中要注重围绕丰富职业体验,开展服务性劳动、参加生产劳动,使学生熟练掌握一定劳动技能,理解劳动创造价值,具有劳动自立意识和主动服务他人、服务社会的情怀.我市某中学鼓励学生暑假期间多参加社会公益劳动,在实践中让学生利用所学知识技能,服务他人和社会,强化社会责任感,为了调查学生参加公益劳动的情况,学校从全体学生中随机抽取100名学生,经统计得到他们参加公益劳动的总时间均在15~65小时内,其数据分组依次为:,,,,,得到频率分布直方图如图所示,其中(1)求,的值,估计这100名学生参加公益劳动的总时间的平均数(同一组中的每一个数据可用该组区间的中点值代替);(2)学校要在参加公益劳动总时间在、这两组的学生中用分层抽样的方法选取5人进行感受交流,再从这5人中随机抽取2人进行感受分享,求这2人来自不同组的概率19.(12分)如图,在四棱锥中,底面为直角梯形,平面平面,,.(1)证明:平面;(2)已知,,,且直线与平面所成角的正弦值为,求平面与平面夹角的余弦值.20.(12分)已知点F为抛物线:()的焦点,点在抛物线上且在x轴上方,.(1)求抛物线的方程;(2)已知直线与曲线交于A,B两点(点A,B与点P不重合),直线PA与x轴、y轴分别交于C、D两点,直线PB与x轴、y轴分别交于M、N两点,当四边形CDMN的面积最小时,求直线l的方程.21.(12分)在数列中,,是与的等差中项,(1)求证:数列是等差数列(2)令,求数列的前项的和22.(10分)设函数(1)求函数的单调区间;(2)若有两个零点,,求的取值范围,并证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据已知条件用逐差法求得的通项公式,再根据裂项求和法求得,代值计算即可.【详解】因为,,则,即,则,故,又,即,解得.故选:B.2、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程为,故选:D﹒3、D【解析】根据给定条件求出两圆圆心距,再借助两圆相切的充要条件列式计算作答.【详解】圆的圆心,半径,圆的圆心,半径,而,即点不可能在圆内,则两圆必外切,于是得,即,解得,所以实数a的值为或.故选:D4、A【解析】设双曲线的左焦点为,连接、,求得、,利用双曲线的定义可得出关于、的等式,即可求得双曲线的离心率.【详解】设双曲线的左焦点为,连接、,如下图所示:由题意可知,点为的中点,也为的中点,且,则四边形为矩形,故,由已知可知,由直角三角形的性质可得,故为等边三角形,故,所以,,由双曲线的定义可得,所以,.故选:A.5、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.6、A【解析】由双曲线方程求出,再根据点在双曲线的两支之间,结合可求得答案【详解】由,得,则,所以左焦点为,右焦点,则由双曲线的定义得,因为点在双曲线的两支之间,所以,所以,当且仅当三点共线时取等号,所以的最小值为9,故选:A7、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.8、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B9、A【解析】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,由切线的性质可知:,,,结合椭圆的定义,即可得出结果.【详解】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,则由切线的性质可知:,,,所以,所以,所以.故选A【点睛】本题主要考查圆与圆锥曲线的综合,熟记椭圆的定义,以及切线的性质即可,属于常考题型.10、B【解析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【点睛】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题11、B【解析】由条件结合双曲线的定义可得,然后可得,然后可求出的范围即可.【详解】由双曲线的定义可得,结合可得当点不为双曲线的顶点时,可得,即当点为双曲线的顶点时,可得,即所以,所以,所以所以双曲线的渐近线与轴的夹角的取值范围是故选:B12、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,所以抽到穿白色衣服的选手号码为,共14、(1)的最小正周期为,的最大值为1(2)【解析】(1)直接根据的表达式和正弦函数的性质可得到的最小正周期和最大值;(2)先根据求得角的大小为,然后在中利用余弦定理求得,最后根据三角形的面积公式即可【小问1详解】已知则的最小正周期为:则的最大值为:【小问2详解】由可得:()或()又为锐角,则可得:.在中,由余弦定理可得:,即又,解得:则的面积为:15、【解析】由平行线的性质求出斜率,由点斜式求出直线方程,然后求出交点坐标,由三角形面积公式可得结果.【详解】双曲线的右顶点,右焦点,,所以渐近线方程为,不妨设直线FB的方程为,将代入双曲线方程整理,得,解得,,所以,所以故答案为:.16、2【解析】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,可得双曲线方程为,设,则到两渐近线的距离为,,从而可求四边形的面积【详解】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,又双曲线过点,,∴,故双曲线方程为,∴渐近线方程为,设,则到两渐近线的距离为,,且,∵渐近线方程为,∴四边形为矩形,∴四边形的面积为故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)设圆心,根据已知条件可得出关于、的方程组,解出、的值,即可得出圆的方程;(2)分析可知直线、的斜率存在,设过点且斜率存在的直线的方程为,即,利用勾股定理可得出,可知直线、的斜率、是关于的二次方程的两根,求出、的坐标,结合韦达定理可求得的值.【小问1详解】解:设圆心,圆的圆心为,由题意可得,解得或,因此,圆的方程为或.【小问2详解】解:若过点的直线斜率不存在,则该直线的方程为,圆心到直线的距离为,不合乎题意.设过点且斜率存在的直线的方程为,即,由题意可得,整理可得,设直线、的斜率分别为、,则、为关于的二次方程的两根,,由韦达定理可得,,在直线的方程中,令,可得,即点在直线的方程中,令,可得,即点,所以,,解得.18、(1),;平均数为40.2;(2)【解析】(1)根据矩形面积和为1,求的值,再根据频率分布直方图求平均数;(2)首先利用分层抽样,在中抽取3人,在中抽取2人,再编号,列举基本事件,求概率,或者利用组合公式,求古典概型概率.详解】(1)依题意,,故又因为,所以,所求平均数为(小时)所以估计这100名学生参加公益劳动的总时间的平均数为40.2(2)由频率分布直方图可知,参加公益劳动总时间在和的学生比例为又由分层抽样的方法从参加公益劳动总时间在和的学生中随机抽取5人,则在中抽取3人,分别记为,,,在中抽取2人,分别记为,,则从5人中随机抽取2人基本事件有,,,,,,,,,这2人来自不同组的基本事件有:,,,,,,共6个,所以所求的概率解法二:由频率分布直方图可知,参加公益劳动总时间在和的学生比例为又由分层抽样的方法从参加公益劳动总时间在和的学生中随机抽取5人,则在中抽取3人,在中抽取2人,则从5人中随机抽取2人的基本事件总数为这2人来自不同组的基本事件数为所以所求的概率19、(1)证明过程见解析;(2).【解析】(1)利用平面与平面垂直的性质得出直线与平面垂直,进而得出平面;(2)建立空间直角坐标系即可求解.【小问1详解】证明:因为平面平面,交线为且平面中,所以平面又平面所以又,且所以平面【小问2详解】解:由(1)知,平面且所以、、两两垂直因此以原点,建立如图所示的空间直角坐标系因为,,,设所以,,,,由(1)知,平面所以为平面的法向量且因为直线与平面所成角的正弦值为所以解得:所以,又,,所以,,,设平面与平面的法向量分别为:,所以,令,则令,则,,即设平面与平面夹角为则所以平面与平面夹角的余弦值为.20、(1);(2)或.【解析】(1)根据给定条件结合抛物线定义求出p即可作答.(2)联立直线l与抛物线的方程,用点A,B坐标表示出点C,D,M,N的坐标,列出四边形CDMN面积的函数关系,借助均值不等式计算得解.【小问1详解】抛物线的准线:,由抛物线定义得,解得,所以抛物线的方程为.【小问2详解】因为点在上,且,则,即,依题意,,设,,由消去并整理得,则有,,直线PA的斜率是,方程为,令,则,令,则,即点C,点D,同理点M,点N,则,,四边形的面积有:,当且仅当,即时取“=”,所以当时四边形CDMN的面积最小值为4,直线l的方程为或.21、(1)证明见解析;(2).【解析】(1)求得,利用等差数列的定义可证得结论成立;(2)求出,可计算得出,利用并项求和法可求得数列的前项的和.小问1详解】解:由题意知是与的等差中项,可得,可得,则,可得,所以,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论