




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蚌埠市四校联考2023-2024学年高二上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的大致图象是()A. B.C. D.2.在中,角A,B,C的对边分别为a,b,c.若,,则的形状为()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰或直角三角形3.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.4.已知球O的半径为2,球心到平面的距离为1,则球O被平面截得的截面面积为()A. B.C. D.5.若椭圆对称轴是坐标轴,长轴长为,焦距为,则椭圆的方程()A. B.C.或 D.以上都不对6.已知点,和直线,若在坐标平面内存在一点P,使,且点P到直线l的距离为2,则点P的坐标为()A.或 B.或C.或 D.或7.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B.C. D.8.在平面直角坐标系中,已知椭圆的上、下顶点分别为、,左顶点为,左焦点为,若直线与直线互相垂直,则椭圆的离心率为A. B.C. D.9.已知函数是区间上的可导函数,且导函数为,则“对任意的,”是“在上为增函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种 B.种C.种 D.种11.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元12.已知,,则在上的投影向量为()A.1 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若直线的方向向量为,平面的一个法向量为,则直线与平面所成角的正弦值为______.14.如图三角形数阵:132456109871112131415……按照自上而下,自左而右的顺序,位于第行的第列,则______.15.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于A,B两点,若是等腰三角形,且,则的面积为___________.16.六面体的所有棱长都为2,底面ABCD是正方形,AC与BD的交点是O,若,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为等差数列,前n项和为,数列是首项为1的等比数列,,,.(1)求和的通项公式;(2)求数列的前n项和.18.(12分)设二次函数.(1)若是函数的两个零点,且最小值为.①求证:;②当且仅当a在什么范围内时,函数在区间上存在最小值?(2)若任意实数t,在闭区间上总存在两实数m,n,使得成立,求实数a的取值范围.19.(12分)在三棱锥A—BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F—DE—C的大小为θ,求sinθ的值20.(12分)已知直线,抛物线.(1)与有公共点,求的取值范围;(2)是坐标原点,过的焦点且与交于两点,求的面积.21.(12分)已知关于的不等式(1)若不等式的解集为,求的值(2)若不等式的解集为,求的取值范围22.(10分)设:实数满足,:实数满足(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.2、B【解析】直接利用正弦定理以及已知条件,求出、、的关系,即可判断三角形的形状【详解】解:在中,已知,,,分别为角,,的对边),由正弦定理可知:,所以,解得,所以为等边三角形故选:【点睛】本题考查三角形的形状的判断,正弦定理的应用,考查计算能力,属于基础题3、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.4、B【解析】根据球的性质可求出截面圆的半径即可求解.【详解】由球的性质可知,截面圆的半径为,所以截面的面积.故选:B5、C【解析】求得、、的值,由此可得出所求椭圆的方程.【详解】由题意可得,解得,,由于椭圆的对称轴是坐标轴,则该椭圆的方程为或.故选:C.6、C【解析】设点的坐标为,根据,点到直线的距离为,联立方程组即可求解.【详解】解:设点的坐标为,线段的中点的坐标为,,∴的垂直平分线方程为,即,∵点在直线上,∴,又点到直线:的距离为,∴,即,联立可得、或、,∴所求点的坐标为或,故选:C7、C【解析】设,利用得到关于的方程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.8、C【解析】依题意,直线与直线互相垂直,,,故选9、A【解析】根据充分条件与必要条件的概念,由导函数的正负与函数单调性之间关系,即可得出结果.【详解】因为函数是区间上的可导函数,且导函数为,若“对任意的,”,则在上为增函数;若在上为增函数,则对任意的恒成立,即由“对任意的,”能推出“在上为增函数”;由“在上为增函数”不能推出“对任意的,”,因此“对任意的,”是“在上为增函数”的充分不必要条件.故选:A10、C【解析】分两种情况讨论:两个氧原子相同、两个氧原子不同,分别计算出两种情况下二氧化碳分子的个数,利用分类加法计数原理可得结果.【详解】分以下两种情况讨论:若两个氧原子相同,此时二氧化碳分子共有种;若两个氧原子不同,此时二氧化碳分子共有种.由分类加法计数原理可知,由上述同位素可构成的不同二氧化碳分子共有种.故选:C.11、B【解析】,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程12、C【解析】根据题意得,进而根据投影向量的概念求解即可.【详解】解:因为,,所以,所以,所以在上的投影向量为故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量夹角公式进行求解即可.【详解】设与的夹角为,直线与平面所成角为,所以,故答案为:14、【解析】由题意可知到第行结束一共有个数字,由此可知在第行;又由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行个数字从大到小排列,由此可知在到数第列,据此即可求出,进而求出结果.【详解】由图可知,第1行有1个数字,第2行有2个数字,第2行有3个数字,……第行有个数字,由此规律可知,到第行结束一共有个数字;又当时,,所以第行结束一共有个数字;当时,,所以在第行,故;由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行是偶数行,共个数字,从大到小排列,所以在倒数第列,所以,所以.故答案为:.15、【解析】根据题意可知,,再结合,即可求出各边,从而求出的面积【详解】,所以,而是的等腰三角形,所以,故的面积为故答案为:16、【解析】结合空间向量运算求得.【详解】,.所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的通项公式为,的通项公式为;(2).【解析】(1)用基本量表示题干中的量,联立求解即可;(2)由,,用乘公比错位相减法求和即可.【详解】(1)设等差数列的公差为d,等比数列的公比为q.由已知,得,而,所以,解得,所以.由得.①,由得.②,联立①②解得,所以.故的通项公式为,的通项公式为.(2)设数列的前n项和为,由,得.,,上述两式相减,得,所以,即.18、(1)①证明见解析;②(2)【解析】(1)①根据二次函数的性质和一元二次方程的求根公式,求得,即可证得;②由①知,区间,根据二次函数的性质,即可求解.(2)存在两实数,使得成立,转化为在区间上,有成立,设﹐结合二次函数的图象与性质,分类讨论,即可求解.【小问1详解】解:①由题意,函数二次函数,因为最小值为,可得,即,因为,所以根据求根公式得,所以.②由①知,区间因为,对称轴,且函数在区间上存在最小值,所以,因为,所以解得,所以,即a的取值范围为.【小问2详解】解:存在两实数,使得成立,则在区间上,有成立,设﹐函数对称轴为①当即时,在上单调减,,此时;②当即时,,此时③当即时,,此时;④当即时,,此时;综合①②③④得,且最小值为,因为对任意实数t,都有,所以只需,即,所以实数a的取值范围.19、(1)(2)【解析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.【详解】(1)连以为轴建立空间直角坐标系,则从而直线与所成角的余弦值为(2)设平面一个法向量为令设平面一个法向量为令因此【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中档题.20、(1);(2).【解析】(1)联立直线l与抛物线C的方程消去x,借助判别式建立不等式求解作答.(2)利用(1)中信息求出点纵坐标差的绝对值即可计算作答.【小问1详解】依题意,由消去x并整理得:,因与有公共点,则,解得:,所以的取值范围是.【小问2详解】抛物线的焦点,则,设,由(1)知,,则,因此,,所以的面积.21、(1);(2)【解析】(1)根据关于的不等式的解集为,得到和1是方程的两个实数根,再利用韦达定理求解.(2)根据关于的不等式的解集为.又因为,利用判别式法求解.【详解】(1)因为关于的不等式的解集为,所以和1是方程的两个实数根,由韦达定理可得,得(2)因为关于的不等式的解集为因为所以,解得,故的取值范围为【点睛】本题主要考查一元二次不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业私人直升机雷达地形回避租赁与数据安全保护协议
- 新能源项目用地规划与合规性咨询及服务合同
- 移动应用平台数据分析补充协议
- 学前教育机构选择权授权管理协议
- 电子产品可靠性试验补充合同
- 网络店铺所有权变更及运营交接协议
- 网红饮品品牌区域代理及品牌形象推广合同
- 高效出行网约车司机加盟合作协议书
- 精致服饰品牌区域代理销售与市场拓展合作协议
- 3D电影替身演员安全保险合同
- 2023年许昌职业技术学院教师招聘考试历年真题库
- 煤矿供电系统及供电安全讲座(ppt课件)
- GB/T 4927-2008啤酒
- GB/T 15707-2017高压交流架空输电线路无线电干扰限值
- 医学统计学练习题与答案
- 西班牙文化概况
- 桩侧摩阻力ppt(图文丰富共28)
- 预拌混凝土出厂合格证2
- 小学校本课程教材《鼓号队》
- 云南省饮用水生产企业名录534家
- 9E燃机系统培训演3.25
评论
0/150
提交评论