




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省北大附属宿州实验学校2024届高二数学第一学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题:,的否定为()A., B.不存在,C., D.,2.从1,2,3,4,5中随机抽取三个数,则这三个数能成为一个三角形三边长的概率为()A. B.C. D.3.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为()A. B.C. D.4.已知,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件5.圆心为的圆,在直线x﹣y﹣1=0上截得的弦长为,那么,这个圆的方程为()A. B.C. D.6.在等差数列中,若,,则公差d=()A. B.C.3 D.-37.已知a,b为正实数,且,则的最小值为()A.1 B.2C.4 D.68.设函数,则()A.4 B.5C.6 D.79.对于公差为1的等差数列,;公比为2的等比数列,,则下列说法不正确的是()A.B.C.数列为等差数列D.数列的前项和为10.已知为虚数单位,复数是纯虚数,则()A. B.4C.3 D.211.若圆与直线相切,则()A.3 B.或3C. D.或12.已知空间向量,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将全体正整数排成一个三角形数阵:按照以上排列的规律,第行从左向右的第2个数为____________.14.已知p:“”为真命题,则实数a的取值范围是_________.15.直线与椭圆交于,两点,线段的中点为,设直线的斜率为,直线(其中为坐标原点)的斜率为,则______.16.从双曲线上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:,过圆外一点作圆的两条切线,,,为切点,设为圆上的一个动点.(1)求的取值范围;(2)求直线的方程.18.(12分)已知椭圆C:,右焦点为F(,0),且离心率为(1)求椭圆C的标准方程;(2)设M,N是椭圆C上不同的两点,且直线MN与圆O:相切,若T为弦MN的中点,求|OT||MN|的取值范围19.(12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,广安市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间(1)求频率分布直方图中a的值:(2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)20.(12分)已知定点,动点满足,设点的轨迹为.(1)求轨迹的方程;(2)若点分别是圆和轨迹上的点,求两点间的最大距离.21.(12分)在三棱锥A—BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F—DE—C的大小为θ,求sinθ的值22.(10分)已知命题;命题.(1)若p是q的充分条件,求m的取值范围;(2)当时,已知是假命题,是真命题,求x的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】含有量词的命题的否定方法:先改变量词,然后再否定结论即可【详解】解:命题:,的否定为:,故选:D2、C【解析】列举出所有情况,然后根据两边之和大于第三边数出能构成三角形的情况,进而得到答案.【详解】5个数取3个数的所有情况如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10种情况,而能构成三角形的情况有{2,3,4;2,4,5;3,4,5}共3种情况,故所求概率.故选:C.3、A【解析】根据双曲线渐近线方程得a和b的关系,根据焦点在抛物线准线上得c的值,结合a、b、c关系即可求解.【详解】∵双曲线的一条渐近线方程是,∴,∵准线方程是,∴,∵,∴,,∴双曲线标准方程为:.故选:A.4、C【解析】根据充要条件的定义进行判断【详解】解:因为函数为增函数,由,所以,故“”是“”的充分条件,由,所以,故“”是“”的必要条件,故“”是“”的充要条件故选:C5、A【解析】由垂径定理,根据弦长的一半及圆心到直线的距离求出圆半径,即可写出圆的标准方程.【详解】圆心到直线x﹣y﹣1=0的距离弦长,设圆半径为r,则故r=2则圆的标准方程为故选:A【点睛】本题主要考查直线与圆的位置关系和圆的标准方程,属于基础题.6、C【解析】由等差数列的通项公式计算【详解】因为,,所以.故选:C【点睛】本题考查等差数列的通项公式,利用等差数列通项公式可得,7、D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D8、D【解析】求出函数的导数,将x=1代入即可求得答案.【详解】,故,故选:D.9、B【解析】由等差数列的通项公式判定选项A正确;利用等比数列的通项公式求出,即判定选项B错误;利用对数的运算和等差数列的定义判定选项C正确;利用错位相减法求和,即判定选项D正确.【详解】对于A:由条件可得,,即选项A正确;对于B:由条件可得,,即选项B错误;对于C:因为,所以,则,即数列是首项和公差均为的等差数列,即选项C正确;对于D:,设数列的前项和为,则,,上面两式相减可得,所以,即选项D正确.故选:B.10、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由纯虚数,∴,解得:,则,故选:C11、B【解析】根据圆与与直线相切,利用圆心到直线的距离等于半径求解.【详解】圆的标准方程为:,则圆心为,半径为,因为圆与与直线相切,所以圆心到直线的距离等于半径,即,解得或,故选:B12、A【解析】求得,即可得出.【详解】,,,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】通过观察、分析、归纳,找出规律运算求解即可【详解】前行共有正整数个,即个,因此第行第个数是全体正整数中第个,即为故答案为:14、【解析】根据条件将问题转化不等式在上有解,则,由此求解出的取值范围.【详解】因为“”为真命题,所以不等式在上有解,所以,所以,故答案为:.15、##-0.0625【解析】使用点差法即可求解﹒【详解】设,,则①-②得:,即,即.故答案为:.16、.【解析】根据题意,设,进而根据中点坐标公式及点P已知双曲线上求得答案.【详解】由题意,设,则,则,即,因为,则,即的轨迹方程为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出PM,就可以求PQ的范围;(2)使用待定系数法求出切线的方程,再求求切点的坐标,从而可以求切点的连线的方程.【小问1详解】如下图所示,因为圆的方程可化为,所以圆心,半径,且,所以,故取值范围为.【小问2详解】可知切线,中至少一条的斜率存在,设为,则此切线为即,由圆心到此切线的距离等于半径,即,得所以两条切线的方程为和,于是由联立方程组得两切点的坐标为和所以故直线的方程为即18、(1);(2)[,3].【解析】(1)由题可得,即求;(2)当直线的斜率不存在或为0,易求,当直线MN斜率存在且不为0时,设直线MN的方程为:,利用直线与圆相切可得,再联立椭圆方程并应用韦达定理求得,然后利用基本不等式即得.【小问1详解】由题可得,∴𝑎=2,𝑏=∴椭圆C的方程为:;小问2详解】当直线MN斜率为0时,不妨取直线MN为𝑦=,则,此时,则;当直线MN斜率不存在,不妨取直线MN为x=,则,此时,则;当直线MN斜率存在且不为0时,设直线MN的方程为:,,因为直线MN与圆相切,所以,即,又因为直线MN与椭圆C交于M,N两点:由,得,则,所以MN中点T坐标为,则,,所以又,当且仅当,即取等号,∴|OT||MN|;综上所述:|OT|∙|MN|的取值范围为[,3].19、(1)(2)众数;中位数【解析】(1)根据频率分布直方图矩形面积和为1列式即可;(2)根据众数即最高矩形中间值,中位数左右两边矩形面积各为0.5列式即可.【小问1详解】由,得【小问2详解】50名学生竞赛成绩的众数为设中位数为,则解得所以这50名学生竞赛成绩的中位数为76.420、(1)(2)【解析】(1)设动点,根据条件列出方程,化简求解即可;(2)设,求出圆心到轨迹上点的距离,配方求最值即可得解.【小问1详解】设动点,则,,,又,∴,化简得,即,∴动点的轨迹E的方程为.【小问2详解】设,圆心到轨迹E上的点的距离∴当时,,∴.21、(1)(2)【解析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.【详解】(1)连以为轴建立空间直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 维修外墙瓷砖合同协议
- 纺织厂生产合同协议
- 绿植租赁协议合同书
- 纸箱供货协议合同协议
- 老年手机出售合同协议
- 美团兼职配送员合同协议
- 美容院套餐合同协议
- 美甲合股经营合同协议
- 美甲开店合伙合同协议
- 自助餐产品采购合同协议
- 《水浒传》读书汇报课
- 梅毒与hiv职业暴露及防护-图文
- 鲤科鱼类八亚科检索表(新)
- 烙铁头的寿命一般有多长
- GB∕T 37370-2019 中国常见色色名和色度特性
- 冀教英语六年级下册作文范文
- Continual Improvement持续改进程序(中英文)
- 10x2000对称式三辊卷板机设计机械毕业设计论文
- RCA应用于给药错误事情的分析结果汇报
- 申论答题纸-方格纸模板A4-可打印
- 土石方测量方案完整版
评论
0/150
提交评论