版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常德市重点中学2023-2024学年数学高二上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是边长为6的等边所在平面外一点,,当三棱锥的体积最大时,三棱锥外接球的表面积为()A. B.C. D.2.正三棱柱各棱长均为为棱的中点,则点到平面的距离为()A. B.C. D.13.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg4.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为()A. B.C. D.5.过双曲线的右焦点有一条弦是左焦点,那么的周长为()A.28 B.C. D.6.为了调查修水县2019年高考数学成绩,在高考后对我县6000名考生进行了抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本,这项调查宜采用的抽样方法是()A.系统抽样法 B.分层抽样法C.抽签法 D.简单的随机抽样法7.若数列满足,,则数列的通项公式为()A. B.C. D.8.已知函数,,若对任意的,,都有成立,则实数的取值范围是()A. B.C. D.9.如图,四面体-,是底面△的重心,,则()A B.C. D.10.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.22011.已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1 B.2C.3 D.412.已知椭圆的长轴长为,短轴长为,则椭圆上任意一点到椭圆中心的距离的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知椭圆C1和双曲线C2交于P1、P2、P3、P4四个点,F1和F2分别是C1的左右焦点,也是C2的左右焦点,并且六边形是正六边形.若椭圆C1的方程为,则双曲线方程为______.14.若直线是曲线的切线,也是曲线的切线,则__________15.在△ABC中,角A,B,C所对的边分别为a,b,c,设△ABC的面积为S,其中,,则S的最大值为______16.已知向量,若,则实数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.18.(12分)已知椭圆的离心率是,且过点.直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的面积的最大值;(Ⅲ)设直线,分别与轴交于点,.判断,大小关系,并加以证明.19.(12分)(1)已知命题p:;命题q:,若“”为真命题,求x的取值范围(2)设命题p:;命题q:,若是的充分不必要条件,求实数a的取值范围20.(12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?21.(12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点22.(10分)已知函数,其中(1)讨论的单调性;(2)若不等式对一切恒成立,求实数k的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意分析可得,当时三棱锥的体积最大,然后作图,将三棱锥还原成正三棱柱,按照正三棱柱外接球半径的计算方法来计算,即可计算出球半径,从而完成求解.【详解】由题意可知,当三棱锥的体积最大时是时,为正三角形,如图所示,将三棱锥补成正三棱柱,该正三棱柱的外接球就是三棱锥的外接球,而正三棱柱的外接球球心落在上下底面外接圆圆心连线的中点上,设外接圆半径为,三棱锥外接球半径为,由正弦定理可得:,所以,,所以三棱锥外接球的表面积为.故选:C.2、C【解析】建立空间直角坐标系,利用点面距公式求得正确答案.【详解】设分别是的中点,根据正三棱柱的性质可知两两垂直,以为原点建立如图所示空间直角坐标系,,,.设平面的法向量为,则,故可设,所以点到平面的距离为.故选:C3、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D4、D【解析】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,求出点M的轨迹方程即可计算得解.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,化简并整理得:,于是得点M的轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故选:D5、C【解析】根据双曲线方程得,,由双曲线的定义,证出,结合即可算出△的周长【详解】双曲线方程为,,根据双曲线的定义,得,,,,相加可得,,,因此△的周长,故选:C6、B【解析】考生分为几个不同的类型或层次,由此可以确定抽样方法;【详解】6000名考生进行抽样调查,其中2000名文科考生,3800名理科考生,200名艺术和体育类考生,从中抽到了120名考生的数学成绩作为一个样本又文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好故选:B.【点睛】本题主要考查的是分层抽样,掌握分层抽样的有关知识是解题的关键,属于基础题.7、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B8、B【解析】根据题意,将问题转化为对任意的,,利用导数求得的最大值,再分离参数,构造函数,利用导数求其最大值,即可求得参数的取值范围.【详解】由题可知:对任意的,,都有恒成立,故可得对任意的,;又,则,故在单调递减,在单调递增,又,,则当时,,.对任意的,,即,恒成立.也即,不妨令,则,故在单调递增,在单调递减.故,则只需.故选:B.9、B【解析】根据空间向量的加减运算推出,进而得出结果.【详解】因为,所以,故选:B10、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.11、B【解析】利用抛物线的定义求解即可【详解】抛物线的焦点为,准线方程为,因为抛物线上一点M与焦点间的距离是3,所以,得,即点M的纵坐标为2,故选:B12、A【解析】不妨设椭圆的焦点在轴上,设点,则,且有,利用二次函数的基本性质可求得的取值范围.【详解】不妨设椭圆的焦点在轴上,则该椭圆的标准方程为,设点,则,且有,所以,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先根据椭圆的方程求得焦点坐标,然后根据为正六边形求得点的坐标,即点在双曲线上,然后解出方程即可【详解】设双曲线的方程为:根据椭圆的方程可得:又为正六边形,则点的坐标为:则点在双曲线上,可得:又解得:故答案为:14、【解析】根据导数的几何意义,结合待定系数法进行求解即可.【详解】设曲线的切点为:,由,所以过该切点的切线斜率为:,于切线方程为:,因此有:,设曲线的切点为:,由,所以过该切点的切线斜率为:,于是切线方程为:,因此有:,因为,,即,因此,故答案为:【点睛】关键点睛:根据导数的几何意义进行求解是解题的关键.15、【解析】应用余弦定理有,再由三角形内角性质及同角三角函数平方关系求,根据基本不等式求得,注意等号成立条件,最后利用三角形面积公式求S的最大值.【详解】由余弦定理知:,而,所以,而,即,当且仅当时等号成立,又,当且仅当时等号成立.故答案为:16、2【解析】利用向量平行的条件直接解出.【详解】因为向量,且,所以,解得:2故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)样本中高一年级学生的人数为,;(2);(3).【解析】(1)利用分层抽样可求得样本中高一年级学生的人数,利用频率直方图中所有矩形的面积之和为可求得的值;(2)利用中位数左边的矩形面积之和为可求得中位数的值;(3)利用频率分布直方图可计算出全校睡眠时间超过个小时的学生人数.【小问1详解】解:样本中高一年级学生的人数为.,解得.【小问2详解】解:设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,则,得,故样本数据的中位数约为.【小问3详解】解:由图可知,样本数据落在的频率为,故全校睡眠时间超过个小时的学生人数约为.18、(1)(2)(3)见解析【解析】(1)由题意求得,所以椭圆的方程为(2)联立直线与椭圆方程,由题意可得.三角形的高为.,面积表达式,当且仅当时,.即的面积的最大值是(3)结论为.利用题意有.所以试题解析:解:(Ⅰ)设椭圆的半焦距为因为椭圆的离心率是,所以,即由解得所以椭圆的方程为(Ⅱ)将代入,消去整理得令,解得设则,所以点到直线的距离为所以的面积,当且仅当时,所以的面积的最大值是(Ⅲ).证明如下:设直线,的斜率分别是,,则由(Ⅱ)得,所以直线,的倾斜角互补所以,所以所以19、(1)(2)【解析】根据复合命题的真值表知:p真q假;非q是非p的充分不必要条件,等价于p是q的充分不必要条件,等价于p是q的真子集【详解】命题p:,即;命题,即;由于“”为真命题,则p真q假,从而由q假得,,所以x的取值范围是命题p:,即命题q:,即由于是的充分不必要条件,则p是q的充分不必要条件即有,【点睛】本题考查了复合命题及其真假属基础题20、(1);(2),;(3)【解析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数试题解析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方图中x的值是0.0075.-------------3分(2)月平均用电量的众数是=230.-------------5分因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用电量的中位数是224.------------8分(3)月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中煤化工笔试题
- 2025年二级建造师考试试题及答案详解【全优】
- 事业单位招聘《综合基础知识》考试试题(卷)及答案
- 2025年中医眼科视网膜病视网膜黄斑变性试题解析
- 2025年三年级科技知识考试题库及答案
- 口腔执业医师-89-2-真题-无答案
- 2025年孕产妇产前护理干预护理技能测试卷
- 2025年母婴护师资格考试红宝书历年真题
- 交管3驾照学法减分题库附含答案
- 全面质量答题题库及答案
- 2025年奶粉行业分析报告及未来发展趋势预测
- 2025年岩棉复合板行业分析报告及未来发展趋势预测
- 2024妊娠期心肺复苏中国急诊专家共识
- 建设单位安全生产教育培训计划
- 医院培训课件:《护理安全之警示教育》
- 眼耳鼻喉科护理质量提升工作计划
- 道路运输安全生产制度范本
- 2025年及未来5年中国人工智能医疗行业发展监测及市场发展潜力预测报告
- 制药企业安全生产培训
- 辽宋夏金元历史课件
- 危重症患者体温管理护理查房
评论
0/150
提交评论