




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
迪庆市重点中学2024届高二数学第一学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.己知命题;命题,则下列命题中为假命题的是()A. B.C. D.2.双曲线的一条渐近线方程为,则双曲线的离心率为()A.2 B.5C. D.3.如图,执行该程序框图,则输出的的值为()A. B.2C. D.34.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件5.若数列对任意满足,下面选项中关于数列的说法正确的是()A.一定是等差数列B.一定是等比数列C.可以既是等差数列又是等比数列D.可以既不是等差数列又不是等比数列6.设函数,若为奇函数,则曲线在点处的切线方程为()A. B.C. D.7.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.2208.棱长为1的正四面体的表面积是()A. B.C. D.9.某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38 B.40C.46 D.5810.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.411.连续抛掷一枚硬币3次,观察正面出现的情况,事件“至少2次出现正面”的对立事件是()A.只有2次出现反面 B.至多2次出现正面C.有2次或3次出现正面 D.有2次或3次出现反面12.在等比数列中,,则的公比为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆,A,B是椭圆C上的两个不同的点,设,若,则直线AB的方程为______14.已知函数,则曲线在点处的切线方程为______15.已知某次数学期末试卷中有8道4选1的单选题16.若恒成立,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,(1)求的单调区间;(2)当时,求证:在上恒成立18.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由19.(12分)如图,在四棱锥中,底面,,是的中点,,.(1)证明:;(2)求直线与平面所成角的正弦值.20.(12分)为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米至11米(含7米和11米,假定该校高一女生掷铅球均不超过11米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间(1)求实数的值及参加“掷铅球”项目测试的人数;(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率21.(12分)记为等差数列的前n项和,已知.(1)求的通项公式;(2)求的最小值.22.(10分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据或且非命题的真假进行判断即可.【详解】当,故命题是真命题,,故命题是真命题.因此可知是假命题,是真命题,,均为真命题.故选:A2、D【解析】根据渐近线方程求得关系,结合离心率的计算公式,即可求得结果.【详解】因为双曲线的一条渐近线方程为,则;又双曲线离心率.故选:D.3、B【解析】根据程序流程图依次算出的值即可.【详解】,第一次执行,,第二次执行,,第三次执行,,所以输出.故选:B4、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D5、D【解析】由已知可得或,结合等差数列和等比数列的定义,可得答案【详解】由,得或,即或,若,则数列是等差数列,则B错误;若,当时,数列是等差数列,当时,数列是等比数列,则A错误数列是等差数列,也可以是等比数列;由,不能得到数列为非0常数列,则不可以既是等差又是等比数列,则C错误;可以既不是等差又不是等比数列,如1,3,5,10,20,,故D正确;故选:D6、C【解析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C7、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.8、D【解析】采用数形结合,根据边长,结合正四面体的概念,计算出正三角形的面积,可得结果【详解】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以,所以可知:正四面体的表面积为,故选:D9、B【解析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.10、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B11、D【解析】根据对立事件的定义即可得出结果.【详解】对立事件是指事件A和事件B必有一件发生,连续抛掷一枚均匀硬币3次,“至少2次出现正面”即有2次或3次出现正面,对立事件为0次或1次出现正面,即“有2次或3次出现反面”故选:D12、D【解析】利用等比数列的性质把方程都变成和有关的式子后进行求解.【详解】由等比数列的等比中项性质可得,又,所以,因,所以,所以,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知可得为的中点,再由点差法求所在直线的斜率,即可求得直线的方程【详解】由,可得为的中点,且在椭圆内,设,,,,则,,,则,即所在直线的斜率为直线的方程为,即故答案为:14、【解析】先求出,求出导函数及,进而求出切线方程.【详解】∵,∴,又,∴在处的切线方程为,即故答案为:15、##0.84375【解析】合理设出事件,利用全概率公式进行求解.【详解】设小王从这8题中任选1题,且作对为事件A,选到能完整做对的5道题为事件B,选到有思路的两道题为事件C,选到完全没有思路为事件D,则,,,由全概率公式可得:PA=PB故答案为:16、1【解析】利用导数研究的最小值为,再构造研究其最值,即可确定参数a的值.【详解】令,则且,当时,递减;当时,递增;所以,即在上恒成立,令,则,当时,递增;当时,递减;所以,综上,.故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调减区间为,单调增区间为;(2)证明见解析.【解析】(1)求得,根据其正负,即可判断函数单调性从而求得函数单调区间;(2)根据题意,转化目标不等式为,分别构造函数,,利用导数研究其单调性,即可证明.【小问1详解】因为,故可得,又为单调增函数,令,解得,故当时,;当时,,故的单调减区间为,单调增区间为.【小问2详解】当时,,要证,即证,又,则只需证,即证,令,,当时,,单调递增,当时,,单调递减,故当时,取得最大值;令,,又为单调增函数,且时,,当时,,单调递减,当时,,单调递增,故当时,取得最小值.则,且当时,同时取得最小值和最大值,故,即,也即时恒成立.【点睛】本题考察利用导数求函数的单调区间,以及利用导数研究恒成立问题;处理本题的关键是合理转化目标式,属中档题.18、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.19、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别求出向量和,证明即可;(2)先求出和平面的法向量,然后利用公式求出,则直线与平面所成角的正弦值即为.【小问1详解】证明:∵,,∴△≌△,∴,设,在△中,由余弦定理得,即,则,即,,连接交于点,分别以,为轴、轴,过作轴,建立如图空间直角坐标系,则,,,,,,的中点,则,,∵,∴.【小问2详解】由(1)可知,,,,设平面的法向量为,则,即,令,则,即,则,记直线与平面所成角为,.20、(1)0.05,40;(2)【解析】(1)因为由频率分布直方图可得共五组的频率和为1所以可得一个关于的等式,即可求出的值.再根据已知有4名学生的成绩在9米到11米之间,可以求出本次参加“掷铅球”项目测试的人数.本小题要根据所给的图表及直方图作答,频率的计算易漏乘以组距.(2)因为若此次测试成绩最好的共有4名同学.成绩最差的共有2名同学.所以从6名同学中抽取2名同学共有15中情况,其中两人在同组情况由8中.所以可以计算出所求的概率.试题解析:(Ⅰ)由题意可知解得所以此次测试总人数为答:此次参加“掷铅球”的项目测试的人数为40人(Ⅱ)设从此次测试成绩最好和最差的两组中随机抽取2名学生自不同组的事件为A:由已知,测试成绩在有2人,记为;在有4人,记为.从这6人中随机抽取2人有,共15种情况事件A包括共8种情况.所以答:随机抽取的2名学生自不同组的概率为考点:1.频率分布直方图.2.概率问题.3.列举分类的思想.21、(1)(2)【解析】(1)设数列的公差为d,由,利用等差数列的前n项和公式求解;(2)利用等差数列的前n项和公式结合二次函数的性质求解.【小问1详解】解:设数列的公差为d,∵,∴,解得2,∴.【小问2详解】由(1)知2,∴,,,∴当时,取得最小值-16.22、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建泉州市永春县部分公办学校专项招聘编制内新任教师23人(二)模拟试卷附答案详解(黄金题型)
- 2025湖南长沙市雨花区东塘街道社区卫生服务中心公开招聘考前自测高频考点模拟试题及1套参考答案详解
- 员工转正试用期工作总结15篇
- 2025年河北唐山幼儿师范高等专科学校公开选聘工作人员岗位考前自测高频考点模拟试题及答案详解(典优)
- 2025年临沂科技职业学院公开引进高层次人才(22人)模拟试卷附答案详解(模拟题)
- 2025年陶瓷生产加工机械项目建议书
- 2025广东东莞市莞城医院招聘纳入岗位管理的编制外人员9人模拟试卷及答案详解参考
- 2025年西安建筑科技大学医院招聘模拟试卷及一套答案详解
- 2025广西梧州市公安局第二批招聘警务辅助人员160人考前自测高频考点模拟试题及答案详解(新)
- 2025年禹州市法院系统招聘真题
- 2025年公共基础知识考试题库(附答案)
- 装饰装修应急预案及突发事件的应急措施
- 水务理论知识考试题库及答案
- GB/T 20863.2-2025起重机分级第2部分:流动式起重机
- 房地产企业成本管理(课件)
- 文体与翻译公文文体科技文体
- GB/T 15820-1995聚乙烯压力管材与管件连接的耐拉拔试验
- GB 4706.76-2008家用和类似用途电器的安全灭虫器的特殊要求
- 部编人教版九年级语文上册第14课《故乡》课件
- 诗歌《舟夜书所见》课件
- DBJ51T 196-2022 四川省智慧工地建设技术标准
评论
0/150
提交评论