




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市师范大学附属中学2023-2024学年数学高二上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某班进行了一次数学测试,全班学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若该班学生这次数学测试成绩的中位数的估计值为,则的值为()A. B.C. D.2.圆与直线的位置关系为()A.相切 B.相离C.相交 D.无法确定3.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若,则|QF|=()A. B.C.3 D.24.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.35.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.6.已知向量,,若,则()A.1 B.C. D.27.已知数列满足,,则()A. B.C. D.8.已知方程表示的曲线是焦点在轴上的椭圆,则的取值范围A. B.C. D.9.已知双曲线,过左焦点且与轴垂直的直线与双曲线交于、两点,若弦的长恰等于实铀的长,则双曲线的离心率为()A. B.C. D.10.已知函数(且,)的一个极值点为2,则的最小值为()A. B.C. D.711.如图,执行该程序框图,则输出的的值为()A. B.2C. D.312.已知中,角,,的对边分别为,,,且,,成等比数列,则这个三角形的形状是()A.直角三角形 B.等边三角形C.等腰直角三角形 D.钝角三角形二、填空题:本题共4小题,每小题5分,共20分。13.在正方体中,则直线与平面所成角的正弦值为__________14.已知四面体中,,分别在,上,且,,若,则________.15.已知B(,0)是圆A:内一点,点C是圆A上任意一点,线段BC的垂直平分线与AC相交于点D.则动点D的轨迹方程为_________________.16.已知函数(1)求函数的单调区间;(2)设上存在极大值M,证明:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司从2020年初起生产某种高科技产品,初始投入资金为1000万元,到年底资金增长50%.预计以后每年资金增长率与第一年相同,但每年年底公司要扣除消费资金x万元,余下资金再投入下一年的生产.设第n年年底扣除消费资金后的剩余资金为万元.(1)用x表示,,并写出与的关系式;.(2)若企业希望经过5年后,使企业剩余资金达3000万元,试确定每年年底扣除的消费资金x的值(精确到万元).18.(12分)已知圆C的圆心为,且圆C经过点(1)求圆C的一般方程;(2)若圆与圆C恰有两条公切线,求实数m的取值范围19.(12分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角余弦值.20.(12分)在数列中,,,且对任意的,都有.(1)数列的通项公式;(2)设数列,求数列的前项和.21.(12分)已知双曲线的一条渐近线方程为,且双曲线C过点.(1)求双曲线C的标准方程;(2)过点M的直线与双曲线C的左右支分别交于A、B两点,是否存在直线AB,使得成立,若存在,求出直线AB的方程;若不存在,请说明理由.22.(10分)已知函数在处的切线与直线平行(1)求值,并求此切线方程;(2)证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得结果.【详解】由题意有,得,又由,得,解得,,有故选:A.2、C【解析】先计算出直线恒过定点,而点在圆内,所以圆与直线相交.【详解】直线可化为,所以恒过定点.把代入,有:,所以在圆内,所以圆与直线的位置关系为相交.故选:C3、C【解析】过点Q作QQ′⊥l交l于点Q′,利用抛物线定义以及相似得到|QF|=|QQ′|=3.【详解】如图所示:过点Q作QQ′⊥l交l于点Q′,因为,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3.故选C.【点睛】本题考查了抛物线的定义应用,意在考查学生的计算能力.4、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.5、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A6、B【解析】由向量平行,先求出的值,再由模长公式求解模长.【详解】由,则,即则,所以则故选:B7、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.8、A【解析】根据条件,列出满足条件的不等式,求的取值范围.【详解】曲线表示交点在轴的椭圆,,解得:.故选A【点睛】本题考查根据椭圆的焦点位置求参数的取值范围,意在考查基本概念,属于基础题型.9、B【解析】求出,进而求出,之间的关系,即可求解结论【详解】解:由题意,直线方程为:,其中,因此,设,,,,解得,得,,弦的长恰等于实轴的长,,,故选:B10、B【解析】求出函数的导数,由给定极值点可得a与b的关系,再借助“1”的妙用求解即得.【详解】对求导得:,因函数的一个极值点为2,则,此时,,,因,即,因此,在2左右两侧邻近的区域值一正一负,2是函数的一个极值点,则有,又,,于是得,当且仅当,即时取“=”,所以的最小值为.故选:B11、B【解析】根据程序流程图依次算出的值即可.【详解】,第一次执行,,第二次执行,,第三次执行,,所以输出.故选:B12、B【解析】根据题意求出,结合余弦定理分情况讨论即可.【详解】解:因为,所以.由题意得,利用余弦定理得:.当,即时,,即,解得:.此时三角形为等边三角形;当,即时,,不成立.所以三角形的形状是等边三角形.故选:B.【点睛】本题主要考查利用余弦定理判断三角形的形状,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系,利用空间向量夹角公式进行求解即可【详解】建立如图所示的空间直角坐标系,设该正方体的棱长为1,所以,,,,因此,,,设平面的法向量为:,所以有:,令,所以,因此,设与的夹角为,直线与平面所成角为,所以有,故答案为:14、【解析】连接,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接∵四面体中,,分别在,上,且,∴∴∴.故答案为:15、【解析】利用椭圆的定义可得轨迹方程.【详解】连接,由题意,,则,由椭圆的定义可得动点D的轨迹为椭圆,其焦点坐标为,长半轴长为2,故短半轴长为1,故轨迹方程为:.故答案为:.16、(1)在单调递增,单调递减;(2)详见解析.【解析】(1)求得,利用和即可求得函数的单调性区间;(2)求得函数的解析式,求,对的情况进行分类讨论得到函数有极大值的情形,再结合极大值点的定义进行替换、即可求解.【详解】(1)由题意,函数,则,当时,令,所以函数单调递增;当时,令,即,解得或,令,即,解得,所以函数在区间上单调递增,在区间中单调递减,当时,令,即,解得或,令,即,解得,所以函数在单调递增,在单调递减.(2)由函数,则,令,可得令,解得,当时.,函数在单调递增,此时,所以,函数在上单调递增,此时不存在极大值,当时,令解得,令,解得,所以上单调递减,在上单调递增,因为在上存在极大值,所以,解得,因为,易证明,存在时,,存在使得,当在区间上单调递增,在区间单调递减,所以当时,函数取得极大值,即,,由,所以【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)x=348【解析】(1)根据题意直接得,,进而归纳出;(2)由(1)可得,利用等比数列的求和公式可得,结合即可计算出d的值.【小问1详解】由题意知,,,;【小问2详解】由(1)可得,,则,所以,即,当时,,解得,当时,万元.故该企业每年年底扣除消费资金为348万元时,5年后企业剩余资金为3000万元.18、(1)(2)【解析】(1)设圆C的一般方程为.由圆C的圆心和圆C经过点求解;(2)根据圆与圆C恰有两条公切线,由圆O与圆C相交求解.【小问1详解】解:设圆C的一般方程为∵圆C的圆心,∴即又圆C经过点,∴解得经检验得圆C的一般方程为;【小问2详解】由(1)知圆C的圆心为,半径为5∵圆与圆C恰有两条公切线,∴圆O与圆C相交∴∵,∴∴m的取值范围是19、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标,最后利用空间向量法求出二面角的余弦值;【小问1详解】证明:连接DE因为,且D为AC的中点,所以因为,且D为AC的中点,所以因为平面BDE,平面BDE,且,所以平面因为,所以平面BDE,所以【小问2详解】解:由(1)可知因为平面平面,平面平面,平面,所以平面,所以DC,DB,DE两两垂直以D为原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系设.则,,.从而,设平面BCE的法向量为,则令,得平面ABC的一个法向量为设二面角为,由图可知为锐角,则20、(1);(2).【解析】(1)由递推式可得,根据等比数列的定义写出通项公式,再由累加法求的通项公式;(2)由(1)可得,再应用裂项相消法求前项和【小问1详解】由可得:,又,,∴,则数列是首项为2,公比为2的等比数列,∴.∴.【小问2详解】∵,∴∴.21、(1);(2)存在,直线AB的方程为:或.【解析】(1)根据给定的渐近线方程及所过的点列式计算作答.(2)假定存在符合条件的直线AB,设出其方程,借助弦长公式计算判断作答.【小问1详解】依题意,,解得:,所以双曲线C的标准方程是.【小问2详解】假定存在直线AB,使得成立,显然不垂直于y轴,否则,设直线:,由消去x并整理得:,因直线与双曲线C的左右支分别交于A、B两点,设,于是得,则有,即或,因此,,解得,所以存在直线AB,使得成立,此时,直线AB的方程为:或.22、(1);;(2)证明见解析.【解析】(1)根据导数几何意义可知,解方程求得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国APET包装盒行业现状规模及投资发展动向研究报告
- 邢台学院《国际文化贸易(双语)》2023-2024学年第二学期期末试卷
- 2025-2030年中国DSD酸市场投资规划及运营前景研究报告
- 甘肃省兰州市名校2024年中考二模数学试题含解析
- 广东省番禺区六校教育教联合体2023-2024学年中考数学最后一模试卷含解析
- 2025安全管理人员安全培训考试试题带答案(培优)
- 2025年企业员工岗前安全培训考试试题答案完整版
- 2025年日常安全培训考试试题【考试直接用】
- 2024-2025生产经营负责人安全培训考试试题答案突破训练
- 2025新入职工入职安全培训考试试题答案新
- 8.1陶瓷器及宋代五大名窑(全国导游基础知识-第五版-)
- 中等职业学校语文课程标准(2020年版)(word精排版)
- 可爱卡通立冬手抄报
- 托管专项施工方案
- 汽车产品可靠性工程框架
- 风电项目开发流程教学课件
- 泌尿外科前列腺增生一病一品
- 2022公务员录用体检操作手册(试行)
- GB/T 3785.2-2023电声学声级计第2部分:型式评价试验
- 民航重大安全隐患判定标准(试行)
- 产品思维到用户思维
评论
0/150
提交评论