




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽六安市皖西高中教学联盟2024届高二数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线的斜率为1,直线的倾斜角比直线的倾斜角小15°,则直线的斜率为()A.-1 B.C. D.12.已知命题“若,则”,命题“若,则”,则下列命题中为真命题的是()A. B.C. D.3.方程化简的结果是()A. B.C. D.4.直线的倾斜角为()A.0 B.C. D.5.在二面角的棱上有两个点、,线段、分别在这个二面角的两个面内,并且都垂直于棱,若,,,,则这个二面角的大小为()A. B.C. D.6.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.16030.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26C.0.56 D.0.747.在等差数列{an}中,a1=2,a5=3a3,则a3等于()A.-2 B.0C.3 D.68.已知圆过点,,且圆心在轴上,则圆的方程是()A. B.C. D.9.已知、分别是双曲线的左、右焦点,为一条渐近线上的一点,且,则的面积为()A. B.C. D.110.在等比数列中,若,,则()A. B.C. D.11.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.12.两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直线的方程为()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=0二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,若,则该数列的通项公式__________14.在等差数列中,前n项和记作,若,则______15.已知,,则以AB为直径的圆的方程为___________.16.若函数在x=1处的切线与直线y=kx平行,则实数k=___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,矩形的两个顶点位于x轴上,另两个顶点位于抛物线在x轴上方的曲线上,求矩形面积最大时的边长.18.(12分)已知抛物线的焦点为F,倾斜角为45°的直线m过点F,若此抛物线上存在3个不同的点到m的距离为,求此抛物线的准线方程19.(12分)已知椭圆)过点A(0,),且与双曲线有相同的焦点(1)求椭圆C的方程;(2)设M,N是椭圆C上异于A的两点,且满足,试判断直线MN是否过定点,并说明理由20.(12分)已知直线,,,其中与的交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程21.(12分)已知椭圆C与椭圆有相同的焦点,且离心率为.(1)椭圆C的标准方程;(2)若椭圆C的两个焦点,P是椭圆上的点,且,求的面积.22.(10分)已知椭圆的左、右焦点分别为,,椭圆上一点满足,且的面积为(1)求椭圆的方程;(2)直线与椭圆有且只有一个公共点,过点作直线的垂线.设直线交轴于,交轴于,且点,求的轨迹方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线的斜率求出其倾斜角可求得答案.【详解】设直线的倾斜角为,所以,因为,所以,因为直线的倾斜角比直线的倾斜角小15°,所以直线的倾斜角为,则直线的斜率为.故选:C2、D【解析】利用指数函数的单调性可判断命题的真假,利用特殊值法可判断命题的真假,结合复合命题的真假可判断出各选项中命题的真假.【详解】对于命题,由于函数为上的增函数,当时,,命题为真命题;对于命题,若,取,,则,命题为假命题.所以,、、均为假命题,为真命题.故选:D.【点睛】本题考查简单命题和复合命题真假的判断,考查推理能力,属于基础题.3、D【解析】由方程的几何意义得到是椭圆,进而得到焦点和长轴长求解.【详解】∵方程,表示平面内到定点、的距离的和是常数的点的轨迹,∴它的轨迹是以为焦点,长轴,焦距的椭圆;∴;∴椭圆的方程是,即为化简的结果故选:D4、D【解析】根据斜率与倾斜角的关系求解即可.【详解】由题的斜率,故倾斜角的正切值为,又,故.故选:D.5、C【解析】设这个二面角的度数为,由题意得,从而得到,由此能求出结果.【详解】设这个二面角的度数为,由题意得,,,解得,∴,∴这个二面角的度数为,故选:C.【点睛】本题考查利用向量的几何运算以及数量积研究面面角.6、D【解析】利用互斥事件概率计算公式直接求解【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:故选:D【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题7、A【解析】利用已知条件求得,由此求得.【详解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故选:A.8、B【解析】根据圆心在轴上,设出圆的方程,把点,的坐标代入圆的方程即可求出答案.【详解】因为圆的圆心在轴上,所以设圆的方程为,因为点,在圆上,所以,解得,所以圆的方程是.故选:B.9、A【解析】先表示出渐近线方程,设出点坐标,利用,解出点坐标,再按照面积公式求解即可.【详解】由题意知,双曲线渐近线方程为,不妨设在上,设,由得,解得,的面积为.故选:A.10、D【解析】由等比数列的性质得,化简,代入数值求解.【详解】因为数列是等比数列,所以,由题意,所以.故选:D11、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:12、C【解析】两圆方程相减得出公共弦所在直线的方程.【详解】两圆方程相减得,即x﹣2y+6=0则公共弦所在直线的方程为x﹣2y+6=0故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知可得数列是以为首项,3为公比的等比数列,结合等比数列通项公式即可得解.【详解】解:由在数列中,若,则数列是以为首项,为公比的等比数列,由等比数列通项公式可得,故答案为:.【点睛】本题考查了等比数列通项公式的求法,重点考查了运算能力,属基础题.14、16【解析】根据等差数列前项和公式及下标和性质以及通项公式计算可得;【详解】解:因为,所以,即,所以,所以,所以;故答案为:15、【解析】求圆心及半径即可.【详解】由已知可得圆心坐标为,半径为,所以圆的方程为:.故答案为:16、2【解析】由题可求函数的导数,再利用导数的几何意义即求.【详解】∵,∴,,又函数在x=1处的切线与直线y=kx平行,∴.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、当矩形面积最大时,矩形边AB长,BC长【解析】先设出点坐标,进而表示出矩形的面积,通过求导可求出其最大面积.【详解】设点,那么矩形面积,.令解得(负舍).所以S在(0,)上单调递增,在(,2)上单调递;..所以当时,S有最大值.此时答:当矩形面积最大时,矩形边AB长,BC长.18、【解析】设出直线m的方程,利用方程组联立、一元二次方程根的判别式求出与直线m平行的抛物线的切线方程,结合平行线间距离公式进行求解即可.【详解】抛物线的焦点坐标为:,设直线m为,设为与抛物线相切,联立直线与抛物线方程,化简整理可得,,则,解得,且,故两平行线间的距离,解得,故所求的准线方程为19、(1)(2)直线过定点;理由见解析【解析】(1)根据题意可求得,进而求得椭圆方程;(2)考虑直线斜率是否存在,设直线方程并联立椭圆方程,得到根与系数的关系式,然后利用,将根与系数的关系式代入化简得到,结合直线方程,化简可得结论.【小问1详解】依题意,,所以,故椭圆方程为:【小问2详解】当直线MN的斜率不存在时,设M(),N(,),则,,此时M,N重合,不符合题意;当直线MN的斜率存在时,设MN的方程为:,M(,),N(),与椭圆方程联立可得:,即,∴,即,∴,∴,∴,当时,,直线MN:,即,令,则,∴直线过定点【点睛】本题考查了椭圆方程的求法以及直线和椭圆相交时过定点的问题,解答时要注意解题思路的顺畅,解答的难点在于运算量较大且复杂,需要十分细心.20、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得:,可得,故,又的斜率为,则过P且与平行的直线方程,∴所求直线方程为.【小问2详解】由(1),P到的距离,∴以P为圆心,截所得弦长为8的圆的半径,∴所求圆的方程为.21、(1)(2)【解析】(1)由题意求出即可求解;(2)由椭圆的定义和三角形面积公式求解即可【小问1详解】因为椭圆C与椭圆有相同的焦点,所以椭圆C的焦点,,,又,所以,,所以椭圆C的标准方程为.【小问2详解】由,,得,,而,所以,所以22、(1);(2).【解析】(1)利用可得,由椭圆关系可求得,进而得到椭圆方程;(2)将与椭圆方程联立可得,得,结合韦达定理可确定点坐标,由此可得方程,进而得到,化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级移多补少教学设计
- 2025机动车驾驶培训服务合同
- 2025学校体育馆健身房承包合同范本
- 2025股权合同范本
- 社会工作者试卷题目及答案
- 山西数学考试卷子及答案
- 沙城三小考试试卷及答案
- 浙江国企招聘2025浙江金华山旅游发展集团有限公司招聘11人笔试参考题库附带答案详解
- 森林生态系统恢复力与灾害风险管理考核试卷
- 海洋渔业文化传承与发扬考核试卷
- 遗体转运协议书范本
- 挖矿委托协议书范本
- 2025春季学期国开电大本科《人文英语3》一平台在线形考综合测试(形考任务)试题及答案
- 针灸推拿治疗失眠的禁忌
- 利达消防L0188EL火灾报警控制器安装使用说明书
- 河南省驻马店市部分学校2024-2025学年高三下学期3月月考地理试题(含答案)
- 2025江苏盐城市射阳县临港工业区投资限公司招聘8人高频重点模拟试卷提升(共500题附带答案详解)
- 2025至2030年中国声音感应控制电筒数据监测研究报告
- DB50T 1041-2020 城镇地质安全监测规范
- 2025-2030年中国冰激凌市场需求分析与投资发展趋势预测报告
- 体育赛事运营方案投标文件(技术方案)
评论
0/150
提交评论