




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳州市重点初中2023-2024学年数学高二上期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,则和的值分别为()A.、 B.、C.、 D.、2.已知等比数列中,,前三项之和,则公比的值为()A1 B.C.1或 D.或3.已知双曲线:与椭圆:有相同的焦点,且一条渐近线方程为:,则双曲线的方程为()A. B.C. D.4.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数的个数为()A.48 B.36C.24 D.185.设平面的法向量为,平面的法向量为,若,则的值为()A.-5 B.-3C.1 D.76.如图,棱长为1的正方体中,为线段上的动点,则下列结论错误的是A.B.平面平面C.的最大值为D.的最小值为7.曲线在处的切线的斜率为()A.-1 B.1C.2 D.38.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.9.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.10.如图,是边长为4的等边三角形的中位线,将沿折起,使得点A与P重合,平面平面,则四棱锥外接球的表面积是()A. B.C. D.11.如图,已知最底层正方体的棱长为a,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,依此方法一直继续下去,则所有这些正方体的体积之和将趋近于()A. B.C. D.12.已知椭圆的右焦点和右顶点分别为F,A,离心率为,且,则n的值为()A.4 B.3C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.当曲线与直线有两个不同的交点时,实数k的取值范围是____________14.已知过点作抛物线的两条切线,切点分别为A,B,直线AB经过抛物线C的焦点F,则___________15.若,且,则的最小值是____________.16.若圆被直线平分,则值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是矩形,,,,,为的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.18.(12分)已知抛物线:()的焦点为,点在上,点在的内侧,且的最小值为(1)求的方程;(2)过点的直线与抛物线交于不同的两点,,直线,(为坐标原点)分别交直线于点,记直线,,的斜率分别为,,,若,求的值19.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率20.(12分)已知圆C的圆心在坐标原点,且过点M()(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;21.(12分)已知.(1)讨论的单调性;(2)当有最大值,且最大值大于时,求取值范围.22.(10分)设数列的首项,(1)证明:数列是等比数列;(2)设且前项和为,求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求得,即可求得、的值.【详解】,则,则,故,.故选:D.2、C【解析】根据条件列关于首项与公比的方程组,即可解得公比,注意等比数列求和公式使用条件.【详解】等比数列中,,前三项之和,若,,,符合题意;若,则,解得,即公比的值为1或,故选:C【点睛】本题考查等比数列求和公式以及基本量计算,考查基本分析求解能力,属基础题.3、B【解析】由渐近线方程,设出双曲线方程,结合与椭圆有相同的焦点,求出双曲线方程.【详解】∵双曲线:的一条渐近线方程为:∴设双曲线:∵双曲线与椭圆有相同的焦点∴,解得:∴双曲线的方程为.故选:B.4、B【解析】直接利用乘法分步原理分三步计算即得解.【详解】从中选一个数字,有种方法;从中选两个数字,有种方法;组成无重复数字的三位数,有个.故选:B5、C【解析】根据,可知向量建立方程求解即可.【详解】由题意根据,可知向量,则有,解得.故选:C6、C【解析】∵,,∴面,面,∴,A正确;∵平面即为平面,平面即为平面,且平面,∴平面平面,∴平面平面,∴B正确;当时,为钝角,∴C错;将面与面沿展成平面图形,线段即为的最小值,在中,,利用余弦定理解三角形得,即,∴D正确,故选C考点:立体几何中的动态问题【思路点睛】立体几何问题的求解策略是通过降维,转化为平面几何问题,具体方法表现为:
求空间角、距离,归到三角形中求解;2.对于球的内接外切问题,作适当的截面,既要能反映出位置关系,又要反映出数量关系;求曲面上两点之间的最短距离,通过化曲为直转化为同一平面上两点间的距离7、D【解析】先求解出导函数,然后代入到导函数中,所求导数值即为切线斜率.【详解】因为,所以,所以切线的斜率为.故选:D.8、B【解析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.9、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.10、A【解析】分别取的中点,易得,则点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,设外接球的半径为,,利用勾股定理求得半径,从而可得出答案.【详解】解:分别取的中点,在等边三角形中,,是中位线,则都是等边三角形,所以,所以点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,由为的中点,所以,因为平面平面,且平面平面,平面,所以平面,则,设外接球半径为,,,则,,所以,解得,所以,所以四棱锥外接球的表面积是.故选:A.第II卷11、D【解析】由已知可判断出所有这些正方体的体积构成首项为,公比为的等比数列,然后求和可得答案.【详解】最底层上面第一个正方体的棱长为,其体积为,上面第二个正方体的棱长为,其体积为,上面第三个正方体的棱长为,其体积为,所有这些正方体的体积构成首项为,公比为的等比数列,其前项和为,当,,所以所有这些正方体的体积之和将趋近于.故选:D.12、B【解析】根据椭圆方程及其性质有,求解即可.【详解】由题设,,整理得,可得.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出直线恒过的定点,结合曲线的图象,数形结合,找出临界状态,即可求得的取值范围.【详解】因为,故可得,其表示圆心为,半径为的圆的上半部分;因为,即,其表示过点,且斜率为的直线.在同一坐标系下作图如下:不妨设点,直线斜率为,且过点与圆相切的直线斜率为数形结合可知:要使得曲线与直线有两个不同的交点,只需即可.容易知:;不妨设过点与相切的直线方程为,则由直线与圆相切可得:,解得,故.故答案为:.14、【解析】设出点的坐标,与抛物线方程联立,结合题意和韦达定理,求得抛物线的方程为,直线AB的方程为,进而求得的值.【详解】设,在抛物线,过切点A与抛物线相切的直线的斜率为,则以为切点的切线方程为,联立方程组,整理得,则,整理得,所以,解得,所以以为切点的切线方程为,即,同理,设,在抛物线,过切点B与抛物线相切的直线,又因为在切线和,所以,所以直线AB的方程为,又直线AB过抛物线的焦点,所以令,可得,即,所以抛物线的方程为,直线AB的方程为,联立方程组,整理得或,所以,所以.故答案为:.15、【解析】应用基本不等式“1”的代换求a+4b的最小值即可.【详解】由,有,则,当且仅当,且,即时等号成立,∴最小值为.故答案为:16、;【解析】求出圆的圆心坐标,代入直线方程求解即可【详解】解:的圆心圆被直线平分,可知直线经过圆的圆心,可得解得;故答案为:1【点睛】本题考查直线与圆的位置关系的应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由可得,再结合和线面垂直的判定定理可得平面,则,再由可得平面.(2)以为原点,,,为轴,轴,轴,建立空间直角坐标系如图所示,利用空间向量求解即可【详解】(1)证明:∵为矩形,且,∴.又∵,.∴,.又∵,,∴平面.∵平面,∴又∵,,∴平面.(2)解:以为原点,,,为轴,轴,轴,建立空间直角坐标系如图所示:则,,,,,∴,,设平面法向量则,即∴,∴∴直线与所成角的正弦值为.18、(1)(2)【解析】(1)先求出抛物线的准线,作于由抛物线的定义,可得,从而当且仅当,,三点共线时取得最小,得出答案.(2)设,,设:与抛物线方程联立,得出韦达定理,设出直线的方程分别与直线的方程联立得出点的坐标,进一步得到,的表达式,由条件可得答案.【小问1详解】的准线为:,作于,则,所以,因为点在的内侧,所以当且仅当,,三点共线时取得最小值,所以,解得,所以的方程为【小问2详解】由题意可知的斜率一定存在,且不为0,设:(),联立消去得,由,即,得,结合,知记,,则直线的方程为由得易知,所以同理可得由,可得,即,化简得,结合,解得19、(1)(2)【解析】(1)根据题意列方程组求解(2)待定系数法设直线后,由条件求出坐标后代入双曲线方程求解【小问1详解】,解得,故双曲线方程为【小问2详解】,故设直线方程为则,由得:故,点在双曲线上,则,解得直线l的斜率为20、(1)(2)【解析】(1)由圆C的圆心在坐标原点,且过点,求得圆的半径,利用圆的标准方程,即可求解;(2)由点到直线的距离公式,求得圆心到直线l的距离为,进而得到点P到直线的距离的最小值为,得出答案.【详解】(1)由题意,圆C的圆心在坐标原点,且过点,所以圆C的半径为,所以圆C的方程为.(2)由题意,圆心到直线l的距离为,所以P到直线的距离的最小值为.【点睛】本题主要考查了圆标准方程的求解,以及直线与圆的位置关系的应用,其中解答中熟练应用直线与圆的位置关系合理转化是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.21、(1)时,在是单调递增;时,在单调递增,在单调递减.(2).【解析】(Ⅰ)由,可分,两种情况来讨论;(II)由(I)知当时在无最大值,当时最大值为因此.令,则在是增函数,当时,,当时,因此a的取值范围是.试题解析:(Ⅰ)的定义域为,,若,则,在是单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 30万千瓦工业园绿色供电项目社会稳定风险评估报告
- 《餐饮服务与管理》我开始接触餐饮服务技能了-熟能生巧(3)(课后自测)答案版
- 崇州领益模具、金属绝缘产品技改项目环境影响报告表
- CTP版材生产扩能技术改造项目环境影响报告书
- 餐饮店长招聘面试题及答案
- 道路交通工程设计优化方案
- 焦作中考语文试卷及答案
- 应用英语考试试题及答案
- 乡镇新媒体试题及答案
- 市政公共设施建设计划
- 2024年米粉项目实施方案
- 日本商务谈判风格剖析课件
- 顶管顶力计算
- 综合实践活动课程的设计与实施
- 《影视鉴赏》教学课件 《影视鉴赏》第三章
- 职工三级安全教育卡模版
- 新疆民族团结模范人物
- 供应链金融业务培训课件
- 幼儿教育政策法规解读-高职-学前教育专业课件
- 污染场地环境风险管理与原位地下水修复技术 陈梦舫
- GB∕T 26745-2021 土木工程结构用玄武岩纤维复合材料
评论
0/150
提交评论