




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省河间市第十四中学2023年高二数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列1,-3,5,-7,9,…的一个通项公式为A. B.C. D.2.设为抛物线焦点,直线,点为上任意一点,过点作于,则()A.3 B.4C.2 D.不能确定3.在等比数列中,,公比,则()A. B.6C. D.24.在正四面体中,点为所在平面上动点,若与所成角为定值,则动点的轨迹是()A.圆 B.椭圆C.双曲线 D.抛物线5.定义运算:.已知,都是锐角,且,,则()A. B.C. D.6.某市物价部门对5家商场的某商品一天的销售量及其售价进行调查,5家商场的售价(元)和销售量(件)之间的一组数据如表所示.按公式计算,与的回归直线方程是,则下列说法错误的是()售价99.51010.511销售量1110865A.B.售价变量每增加1个单位时,销售变量大约减少3.2个单位C.当时,的估计值为12.8D.销售量与售价成正相关7.函数f(x)=xex的单调增区间为()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)8.《周髀算经》中有这样一个问题:从冬至起,接下来依次是小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种共十二个节气,其日影长依次成等差数列,其中大寒、惊蛰、谷雨三个节气的日影长之和为25.5尺,且前九个节气日影长之和为85.5尺,则立春的日影长为()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺9.“”是“方程是圆的方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.411.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.12.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”,已知函数f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命题:①F(x)=f(x)﹣g(x)内单调递增;②f(x)和g(x)之间存在“隔离直线”,且b的最小值为﹣4;③f(x)和g(x)之间存在“隔离直线”,且k的取值范围是(﹣4,0];④f(x)和h(x)之间存在唯一的“隔离直线”y=2x﹣e其中真命题为_____(请填所有正确命题的序号)14.已知随机变量,且,则______.15.命题“存在x∈R,使得x2+2x+5=0”的否定是16.函数的图象在处的切线方程为,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数(1)若,求函数的单调区间;(2)若函数有两个不同的零点,求实数的取值范围18.(12分)已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围19.(12分)已知各项均为正数的等差数列满足,且,,构成等比数列的前三项.(1)求数列,的通项公式;(2)设,求数列的前项和.20.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.21.(12分)如图,在四棱锥中P﹣ABCD中,底面ABCD是边长为2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求证:PA⊥平面ABCD;(2)求平面PAD与平面PBC所成角的余弦值22.(10分)如图,已知正方体的棱长为2,,,分别为,,的中点(1)求直线与直线所成角余弦值;(2)求点到平面的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】观察,奇偶相间排列,偶数位置为负,所以为,数字是奇数,满足2n-1,所以可求得通项公式.【详解】由符号来看,奇数项为正,偶数项为负,所以符号满足,由数值1,3,5,7,9…显然满足奇数,所以满足2n-1,所以通项公式为,选C.【点睛】本题考查观察法求数列的通项公式,解题的关键是培养对数字的敏锐性,属于基础题.2、A【解析】由抛物线方程求出准线方程,由题意可得,由抛物线的定义可得,即可求解.【详解】由可得,准线为,设,由抛物线的定义可得,因为过点作于,可得,所以,故选:A.3、D【解析】利用等比数列的通项公式求解【详解】由等比数列的通项公式得:.故选:D4、B【解析】把条件转化为与圆锥的轴重合,面与圆锥的相交轨迹即为点的轨迹后即可求解.【详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令与圆锥的轴线重合,如图所示,则圆锥母线与所成角为定值,所以面与圆锥的相交轨迹即为点的轨迹.根据题意,不可能垂直于平面即轨迹不可能为圆.面不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算与平面所成角为,即时,轨迹为抛物线,时,轨迹为椭圆,,所以轨迹为椭圆.故选:B.【点睛】本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.5、B【解析】,只需求出与的正、余弦值即可,用平方关系时注意角的范围.【详解】解:因为,都是锐角,所以,,因为,所以,即,,所以,,因为,所有,故选:B.【点睛】信息给予题,已知三角函数值求三角函数值,考查根据三角函数的恒等变换求值,基础题.6、D【解析】首先求出、,再根据回归直线方程必过样本中心点,即可求出,再根据回归直线方程的性质一一判断即可;【详解】解:因为,,与回归直线方程,恒过定点,,解得,故A正确,所以回归直线方程为,即售价变量每增加1个单位时,销售变量大约减少3.2个单位,故B正确;当时,即当时,的估计值为12.8,故C正确;因为回归直线方程为,所以销售量与售价成负相关,故D错误;故选:D7、D【解析】求出,令可得答案.【详解】由已知得,令,得,故函数f(x)=xex的单调增区间为(-1,+∞).故选:D.8、B【解析】设影长依次成等差数列,公差为,根据题意结合等差数列的通项公式及前项和公式求出首项和公差,即可得出答案.【详解】解:设影长依次成等差数列,公差为,则,前9项之和,即,解得,所以立春的日影长为.故选:B.9、A【解析】利用充分条件和必要条件的定义判断.【详解】若方程表示圆,则,即,解得或,故“”是“方程是圆的方程”的充分不必要条件,故选:A10、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B11、A【解析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【点睛】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.12、C【解析】利用椭圆的定义直接求解【详解】由题意得,得,因为,,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解析】①求出F(x)=f(x)﹣g(x)的导数,检验在x∈(,0)内的导数符号,即可判断;②、③设f(x)、g(x)的隔离直线为y=kx+b,x2≥kx+b对一切实数x成立,即有△1≤0,又kx+b对一切x<0成立,△2≤0,k≤0,b≤0,根据不等式的性质,求出k,b的范围,即可判断②③;④存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线,构造函数,求出函数函数的导数,根据导数求出函数的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)内单调递增,故①对;②、③设f(x)、g(x)的隔离直线为y=kx+b,则x2≥kx+b对一切实数x成立,即有△1≤0,k2+4b≤0,又kx+b对一切x<0成立,则kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k⇒﹣4≤k≤0,同理⇒﹣4≤b≤0,故②对,③错;④函数f(x)和h(x)的图象在x处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0当x∈R恒成立,则△≤0,只有k=2,此时直线方程为:y=2x﹣e,下面证明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),当x时,G′(x)=0,当0<x时,G′(x)<0,当x时,G′(x)>0,则当x时,G(x)取到极小值,极小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,则g(x)≤2x﹣e,当x>0时恒成立∴函数f(x)和g(x)存在唯一的隔离直线y=2x﹣e,故④正确故答案为:①②④【点睛】本题以命题的真假判断与应用为载体,考查新定义,关键是对新定义的理解,考查函数的求导,利用导数求最值,属于难题.14、【解析】根据二项分布的均值与方差的关系求得,再根据方差的性质求解即可.【详解】,所以,又因为,所以故答案为:12【点睛】本题主要考查了二项分布的均值与方差的计算,同时也考查了方差的性质,属于基础题.15、对任何x∈R,都有x2+2x+5≠0【解析】因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0故答案为对任何x∈R,都有x2+2x+5≠016、【解析】根据导数的几何意义可得,根据切点在切线上可得.【详解】因为切线的斜率为,所以,又切点在切线上,所以,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的单调递减区间为,单调递增区间为;(2).【解析】(1)求出,进而判断函数的单调性,然后讨论符号后可得函数的单调区间;(2)令,则有两个不同的零点,利用导数讨论的单调性并结合零点存在定理可得实数的取值范围.【小问1详解】当时,,,记,则,所以在上单调递增,又,所以当时,;当时,,所以单调递减区间为,单调递增区间为【小问2详解】令,得,记,则,令得,列表得.x0↘极小值↗要使在上有两个零点,则,所以且函数在和上各有一个零点当时,,,,则,故上无零点,与函数在上有一个零点矛盾,故不满足条件所以,又因为,所以考虑,设,,则,则在上单调递减,故当时,,所以,且,因为,所以,由零点存在定理知在和上各有一个零点综上可知,实数a的取值范围为【点睛】方法点睛:利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图象;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数硏究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数硏究.18、(1)4x﹣y+2=0(2)答案见解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的导数,可得切线的斜率和切点坐标,由直线的点斜式方程可得所求切线的方程;(2)求得f(x)的导数,分a、0<a两种情况讨论求出答案即可;(3)由题意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成关于的函数,结合其单调性和极值可得答案【小问1详解】函数f(x)的定义域为(0,+∞),当a=2时,,导数为4,可得f(x)在x=1处的切线的斜率为4,又f(1)=6,所以f(x)在x=1处的切线的方程为y﹣6=4(x﹣1),即4x﹣y+2=0;【小问2详解】f(x)的导数为f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①当010,即a时,当0<x时,f′(x)<0,f(x)递减;当x<10时,f′(x)>0,f(x)递增所以f(x)在(0,)上递减,在(,10)上递增,f(x)在x处取得极小值,无极大值;②当10即0<a时,f′(x)<0,f(x)在(0,10)上递减,无极值综上可得,当a时,f(x)在(0,)单调递减,在(,10)上单调递增,f(x)在x时取得极小值,无极大值当0<a时,f(x)在区间(0,10)上递减,无极值;【小问3详解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等价为存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因为a>0,可得当0<x时,g′(x)<0,g(x)递减;当x时,g′(x)>0,g(x)递增,所以当x时,g(x)取得极小值,且为最小值,由题意可得,令,,令h′(x)=0,可得x=2,当x∈(0,2)时,h′(x)>0,h(x)递增;当x∈(2,+∞)时,h′(x)<0,h(x)递减所以当x=2时,h(x)取得极大值,且为最大值h(2)=0所以满足的实数a的取值范围是(0,2)∪(2,+∞)19、(1),,;(2).【解析】(1)由等差中项的性质可求出,又,,构成等比数列,设出公差,代入可求出,从而求出数列的通项公式,代入可求出,的值,从而求出数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高级+面试题及答案
- 团体心理咨询试题及答案
- 嵌入式系统优化试题及答案
- 网络技术实战技能试题及答案
- 嵌入式设备的空间布局设计试题及答案
- 行政组织的激励与约束机制试题及答案
- 计算机三级数据库实证研究分析试题及答案
- 起搏器考试题及答案
- 监理师考试的未来发展方向研究试题及答案
- 养老服务用工合同协议书
- 仓管面试试题及答案
- 广西南宁市2025届普通高中毕业班第二次适应性考试(二模)数学试题【含答案】
- 2025-2030中国氮化铝基板行业市场发展趋势与前景展望战略研究报告
- GB/T 3091-2025低压流体输送用焊接钢管
- 湖北省武汉市2025届高中毕业生四月调研考试生物试题及答案(武汉四调)
- 人音版七年级下册赛乃姆教学设计
- SL631水利水电工程单元工程施工质量验收标准第2部分:混凝土工程
- 八年级下册英语2025电子版人教版单词表
- 2025年山东济南历城金融控股集团有限公司招聘笔试参考题库含答案解析
- 末梢血糖监测操作流程
- 心理学基础知识题库及解析
评论
0/150
提交评论