




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省涞水波峰中学2023年高二上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线内一点,过点的直线交抛物线于,两点,且点为弦的中点,则直线的方程为()A. B.C D.2.已知数列是等差数列,下面的数列中必为等差数列的个数为()①②③A.0 B.1C.2 D.33.设.若,则=()A. B.C. D.e4.数列2,,9,,的一个通项公式可以是()A. B.C. D.5.已知,那么函数在x=π处的瞬时变化率为()A. B.0C. D.6.在直三棱柱中,,M,N分别是,的中点,,则AN与BM所成角的余弦值为()A. B.C. D.7.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.28.的展开式中的系数是()A.1792 B.C.448 D.9.已知椭圆,则椭圆的长轴长为()A.2 B.4C. D.810.在平面直角坐标系中,已知点,,,,直线AP,BP相交于点P,且它们斜率之积是.当时,的最小值为()A. B.C. D.11.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③12.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为,则m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.3二、填空题:本题共4小题,每小题5分,共20分。13.i为虚数单位,复数______14.写出一个与椭圆有公共焦点的椭圆方程__________15.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为_______石16.若函数在区间内存在最大值,则实数的取值范围是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.18.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.19.(12分)已知椭圆的左、右焦点分别为,,椭圆上一点满足,且的面积为(1)求椭圆的方程;(2)直线与椭圆有且只有一个公共点,过点作直线的垂线.设直线交轴于,交轴于,且点,求的轨迹方程20.(12分)如图,在正方体中,分别是,的中点.求证:(1)平面;(2)平面平面.21.(12分)如图,在三棱锥中,侧面PAB是边长为4的正三角形且与底面ABC垂直,点D,E,F,H分别是棱PA,AB,BC,PC的中点(1)若点G在棱BC上,且BG=3GC,求证:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值22.(10分)已知的展开式中前三项的二项式系数之和为46,(1)求n;(2)求展开式中系数最大的项
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用点差法求出直线斜率,即可得出直线方程.【详解】设,则,两式相减得,即,则直线方程为,即.故选:B.2、C【解析】根据等差数列的定义判断【详解】设的公差为,则,是等差数列,,是常数列,也是等差数列,若,则不是等差数列,故选:C3、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.4、C【解析】用检验法,由通项公式验证是否符合数列各项,结合排除法可得【详解】第一项为正数,BD中求出第一项均为负数,排除,而AC均满足,A中,,排除A,C中满足,,,故选:C5、A【解析】利用导数运算法则求出,根据导数的定义即可得到结论【详解】由题设,,所以,函数在x=π处瞬时变化率为,故选:A6、D【解析】构建空间直角坐标系,根据已知条件求AN与BM对应的方向向量,应用空间向量夹角的坐标表示求AN与BM所成角的余弦值.【详解】建立如下图所示的空间直角坐标系,∴,,,,∴,,∴,所以AN与BM所成角的余弦值为.故选:D7、A【解析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【详解】点关于坐标原点的对称点是故选:A8、D【解析】根据二项式展开式的通项公式计算出正确答案.【详解】的展开式中,含的项为.所以的系数是.故选:D9、B【解析】根据椭圆的方程求出即得解.【详解】解:由题得椭圆的所以椭圆的长轴长为.故选:B10、A【解析】设出点坐标,求得、所在直线的斜率,由斜率之积是列式整理即可得到点的轨迹方程,设,根据双曲线的定义,从而求出的最小值;【详解】解:设点坐标为,则直线的斜率;直线的斜率由已知有,化简得点的轨迹方程为又,所以点的轨迹方程为,即点的轨迹为以、为顶点的双曲线的左支(除点),因为,设,由双曲线的定义可知,所以,当且仅当、、三点共线时取得最小值,因为,所以,所以,即的最小值为;故选:A11、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.12、A【解析】先求得样本中心,代入回归方程,即可得答案.【详解】由题意得,又样本中心在回归方程上,所以,解得.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简求解即可.【详解】故答案为:.14、(答案不唯一)【解析】根据椭圆的标准方程,以及分析即可【详解】由题可知椭圆的形式应为(,且),可取故答案为:(答案不唯一)15、168石【解析】由题意,得这批米内夹谷约为石考点:用样本估计总体16、【解析】首先利用导数判断函数的单调性,再根据函数在开区间内存在最大值,可判断极大值点就是最大值点,列式求解.【详解】由题可知:所以函数在单调递减,在单调递增,故函数的极大值为.所以在开区间内的最大值一定是又,所以得实数的取值范围是故答案为:【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式,不要忽略这个不等式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设是公差为d的等差数列,是公比为q的等比数列,运用通项公式可得,,进而得到所求通项公式;(2)求得,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【小问1详解】解:(1)设是公差为d的等差数列,是公比为q的等比数列,由,,可得,;即有,,则,则;【小问2详解】解:,则数列的前n项和为.18、(1)证明见解析(2)证明见解析【解析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【小问2详解】证明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB⊂平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC19、(1);(2).【解析】(1)利用可得,由椭圆关系可求得,进而得到椭圆方程;(2)将与椭圆方程联立可得,得,结合韦达定理可确定点坐标,由此可得方程,进而得到,化简整理即可得到所求轨迹方程.【小问1详解】由焦点坐标可知:;,即,,,解得:,,解得:(舍)或,,椭圆的方程为:;【小问2详解】由得:,,整理可得:;,解得:,,则,令,解得:;令,解得:;,即,又,,则的轨迹方程为:.【点睛】思路点睛:本题考查动点轨迹方程的求解问题,解题基本思路是能够利用变量表示出所求点的坐标,根据坐标之间关系,化简整理消掉变量得到所求轨迹方程;易错点是忽略题目中的限制条件,轨迹中出现多余的点.20、证明见解析【解析】(1)连接,根据线面平行的判定定理,即可证明结论成立;(2)连接,,先由线面平行的判定定理,得到平面,再由(1)的结果,结合面面平行的判定定理,即可证明结论成立.【详解】(1)如图,连接.∵四边形是正方形,是的中点,∴是的中点.又∵是的中点,∴.∵平面,平面,∴平面.(2)连接,,∵四边形是正方形,是的中点,∴是的中点.又∵是中点,∴.∵平面平面,∴平面.由(1)知平面,且,∴平面平面.【点睛】本题主要考查证明线面平行与面面平行,熟记线面平行的判定定理以及面面平行的判定定理即可,属于常考题型.21、(1)证明见解析;(2).【解析】(1)由中位线的性质可得、、,再由线面平行的判定可证平面PEF、平面PEF,最后根据面面平行的判定证明结论.(2)应用勾股定理、等边三角形的性质、面面和线面垂直的性质可证、、两两垂直,构建空间直角坐标系,求面BPC、面PCA的法向量,再应用空间向量夹角的坐标表示求二面角的余弦值.【小问1详解】因为D,H分别是PA,PC的中点,所以因为E,F分别是AB,BC的中点,所以,综上,,又平面PEF,平面PEF,所以平面PEF由题意,G是CF的中点,又H是PC的中点,所以,又平面PEF,平面PEF,所以平面PEF由,HG,平面DHG,所以平面平面DHG【小问2详解】在△ABC中,AB=4,AC=2,,所以,所以,又,则因为△PAB为等边三角形,点E为AB的中点,所以,又平面平面ABC,平面平面ABC=AB,所以平面ABC,面ABC,故综上,以E为坐标原点,以EB,EF,EP所在直线分别为x,y,z轴,建立空间直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高端私募股权投资尽职调查合同
- 高效新能源汽车电池短路测试仪租赁与数据管理服务协议
- 呼吸护理案例分享
- 农业循环经济有机种植大棚租赁与环保服务协议
- 海外留学生公寓微波炉租赁及使用培训服务协议
- 快速国际仲裁案件法律翻译执行协议
- 国家级文物修复中心文物保护专员全职聘用服务合同
- 食品包装模具设计版权分成及合作协议
- 重症医学100节公开课体系构建
- 招生营销培训工作总结
- 子女过继协议书范本
- 注塑车间员工培训流程
- 物业管理业主满意度反馈及改善措施
- 煤矿雨季三防培训课件
- 夹层作业安全培训
- 清洗清洁功能无人机
- 《高分子物理》研讨式教学设计与实践:以“对比丝蛋白和聚酰胺6的分子结构及玻璃化转变”为例
- 常见肿瘤标记物的临床意义
- 移动锂电池项目可行性研究报告
- 《结构技术终》课件
- 冲压机械手自动化
评论
0/150
提交评论