




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省名校2023年高二上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,且,则实数等于()A1 B.2C. D.2.意大利数学家斐波那契的《算经》中记载了一个有趣的数列:1,1,2,3,5,8,13,21,34,55,89,144,……,这就是著名的斐波那契数列,该数列的前2022项中有()个奇数A.1012 B.1346C.1348 D.13503.箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,设事件=“至少有一件次品”,则的对立事件为()A.至多两件次品 B.至多一件次品C.没有次品 D.至少一件次品4.已知等差数列共有项,其中奇数项之和为290,偶数项之和为261,则的值为()A.30 B.29C.28 D.275.已知是空间的一个基底,若,,若,则()A. B.C.3 D.6.已知是空间的一个基底,若,,若,则()A B.C.3 D.7.已知关于的不等式的解集是,则的值是()A B.5C. D.78.已知,是双曲线的左、右焦点,点A是的左顶点,为坐标原点,以为直径的圆交的一条渐近线于、两点,以为直径的圆与轴交于两点,且平分,则双曲线的离心率为()A. B.2C. D.39.在数列中,,则的值为()A. B.C. D.以上都不对10.若向量,,,则()A. B.C. D.11.如图,在棱长为2的正方体中,点P在截面上(含边界),则线段的最小值等于()A. B.C. D.12.直线的倾斜角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,若三个数成等差数列,则_________;若三个数成等比数列,则__________14.已知的展开式中项的系数是,则正整数______________.15.函数,则函数在处切线的斜率为_______________.16.在下列三个问题中:①甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,如果规定:同时出现正面或反面算甲胜,一个正面、一个反面算乙胜,那么这个游戏是公平的;②掷一枚骰子,估计事件“出现三点”的概率,当抛掷次数很大时,此事件发生的频率接近其概率;③如果气象预报1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正确的是___________.(用序号表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由18.(12分)如图,在空间四边形中,分别是的中点,分别是上的点,满足.(1)求证:四点共面;(2)设与交于点,求证:三点共线.19.(12分)已知椭圆的左顶点、上顶点和右焦点分别为,且的面积为,椭圆上的动点到的最小距离是(1)求椭圆的方程;(2)过椭圆的左顶点作两条互相垂直的直线交椭圆于不同的两点(异于点).①证明:动直线恒过轴上一定点;②设线段中点为,坐标原点为,求的面积的最大值.20.(12分)双曲线(,)的离心率,且过点.(1)求a,b的值;(2)求与双曲线C有相同渐近线,且过点的双曲线的标准方程.21.(12分)已知抛物线C:x2=4y的焦点为F,过F的直线与抛物线C交于A,B两点,点M在抛物线C的准线上,MF⊥AB,S△AFM=λS△BFM(1)当λ=3时,求|AB|的值;(2)当λ∈[]时,求|+|的最大值22.(10分)(1)已知:函数有零点;:所有的非负整数都是自然数.若为假,求实数的取值范围;(2)已知:;:.若是的必要不充分条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C2、C【解析】由斐波那契数列的前几项分析该数列的项的奇偶规律,由此确定该数列的前2022项中的奇数的个数.【详解】由已知可得为奇数,为奇数,为偶数,因为,所以为奇数,为奇数,为偶数,…………所以为奇数,为奇数,为偶数,又故该数列的前2022项中共有1348个奇数,故选:C.3、C【解析】利用对立事件的定义,分析即得解【详解】箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,可能出现:“两件次品”,“一件次品,一件正品”,“两件正品”三种情况根据对立事件的定义,事件=“至少有一件次品”其对立事件为:“两件正品”,即”没有次品“故选:C4、B【解析】由等差数列的求和公式与等差数列的性质求解即可【详解】奇数项共有项,其和为,∴偶数项共有n项,其和为,∴故选:B5、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C6、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因为,所以存在实数,使,所以,所以,所以,得,,所以,故选:C7、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D8、B【解析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,,,所以,因为,所以又因为平分,所以,由,得,所以,即所以故选:B9、C【解析】由数列的递推公式可先求数列的前几项,从而发现数列的周期性的特点,进而可求.【详解】解:,数列是以3为周期的数列故选:【点睛】本题主要考查了利用数列的递推公式求解数列的项,解题的关键是由递推关系发现数列的周期性的特点,属于基础题.10、A【解析】根据向量垂直得到方程,求出的值.【详解】由题意得:,解得:.故选:A11、B【解析】根据体积法求得到平面的距离即可得【详解】由题意的最小值就是到平面的距离正方体棱长为2,则,,设到平面的距离为,由得,解得故选:B12、D【解析】若直线倾斜角为,由题设有,结合即可得倾斜角的大小.【详解】由直线方程,若其倾斜角为,则,而,∴.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.4②.【解析】由等差中项与等比中项计算即可.【详解】若a,b,c三个数成等差数列.所以.若a,b,c三个数成等比数列.所以故答案为:4,.14、4【解析】由已知二项式可得展开式通项为,根据已知条件有,即可求出值.详解】由题设,,∴,则且为正整数,解得.故答案为:4.15、【解析】根据导数的几何意义求解即可.【详解】解:因为,所以,所以,所以函数在处切线的斜率为故答案为:16、①②【解析】以甲乙获胜概率是否均为来判断游戏是否公平,并以此来判断①的正确性;以频率和概率的关系来判断②③的正确性.【详解】①中:甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,可得4种可能的结果:(正,正),(正,反),(反,正),(反,反)则“同时出现正面或反面”的概率为,“一个正面、一个反面”的概率为即甲乙二人获胜的概率均为,那么这个游戏是公平的.判断正确;②中:“掷一枚骰子出现三点”是一个随机事件,当抛掷次数很大时,此事件发生的频率会稳定于其概率值,故此事件发生的频率接近其概率.判断正确;③中:气象预报1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出现下雨的天数是随机的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判断错误.故答案为:①②三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0(2)f(x)在(0,π)上有且只有一个零点,理由见解析【解析】(1)利用导数的几何意义求解;(2)由,可得,令,,,,利用导数法求解.【小问1详解】解:,所以k=f′(0)=-a=0,所以a=0;【小问2详解】由,可得,令,,所以,①当时,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上单调递增,又因为g(0)=0,所以g(x)在上无零点;②当时,令,所以h′(x)=2cosxex<0,即h(x)在上单调递减,又因为,h(π)=-eπ-1<0,所以存在,,所以g(x)在上单调递增,在上单调递减,因为,g(π)=-π<0,所以g(x)在上且只有一个零点;综上所述:f(x)在(0,π)上有且只有一个零点18、(1)证明见解析(2)证明见解析【解析】【小问1详解】连接AC,分别是的中点,.在中,,所以四点共面.【小问2详解】,所以,又平面平面,同理平面,为平面与平面的一个公共点.又平面平面,即三点共线.19、(1)(2)①证明见解析;②【解析】(1)根据题意得,,解方程即可;(2)①设直线:,直线:,联立曲线分别求出点和的坐标,求直线方程判断定点即可;②根据题意得,代入求最值即可.【小问1详解】根据题意得,,,又,三个式子联立解得,,,所以椭圆的方程为:【小问2详解】①证明:设两条直线分别为和,根据题意和得斜率存在且不等于;因为,所以设直线:,直线:;由,解得,所以,同理,.当时,,所以直线的方程为:,整理得,此时直线过定点;当时,直线的方程为:,此时直线过定点,故直线恒过定点.②根据题意得,,,,所以,当且仅当,即时等号成立,故的面积的最大值为:.【点睛】解决直线与椭圆综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题20、(1),(2)【解析】(1)根据已知条件建立关于a、b、c的方程组可解;(2)巧设与已知双曲线同渐近线的双曲线方程为可得.【小问1详解】因为离心率,所以.又因为点在双曲线C上,所以.联立上述方程,解得,,即,.【小问2详解】设所求双曲线的方程为,由双曲线经过点,得,即.所以双曲线的方程为,其标准方程为.21、(1)(2)【解析】(1)由面积之比可得向量之比,设直线AB的方程,与抛物线的方程联立求出两根之和及两根之积,与向量的关系可得的A,B的横坐标的关系联立求出直线AB的斜率,再由抛物线的性质可得焦点弦的值;(2)由(1)的解法类似的求出AB的中点N的坐标,可得直线AB的斜率与λ的关系,再由λ的范围,求出直线AB的斜率的范围,由题意设直线MF的方程,令y=﹣1求出M的横坐标,进而求出|MN|的最大值,而|+|=2||,求出|+|的最大值【小问1详解】当λ=3时,即S△AFM=3S△BFM,由题意可得=3,因为抛物线C:x2=4y的焦点为F(1,0),准线方程为y=﹣1,设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,联立,整理可得:x2﹣4kx﹣4=0,显然,x1+x2=4k①,x1x2=﹣4②,y1+y2=k(x1+x2)+2=4k2+2,由=3,则(﹣x1,1﹣y1)=3(x2,y2﹣1)可得x1=﹣3x2③,①③联立可得x2=﹣2k,x1=6k,代入②中可得﹣12k2=﹣4,解得k2=,由抛物线的性质可得|AB|=y1+y2+2=4×+2=,所以|AB|的值为;【小问2详解】由(1)可得AB中点N(2k,2k2+2),由=λ,则x1=﹣λx2④,同(1)的算法:①②④联立4k2λ=(1﹣λ)2,因为λ∈[],所以4k2=λ+﹣2,令y=λ+,λ∈[],则函数y先减后增,所以λ=2或时,y最大且为2+,此时4k2最大,且为,所以k2的最大值为:,直线MF的方程为:y=﹣x+1,令y=﹣1,可得x=2k,即M(2k,﹣1),因为|+|=2||,而|NM|=|2k2+2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字化转型在农业电商中的实现试题及答案
- 数学应急考试试题及答案
- 家具材料选择的重要性研究试题及答案
- 黄埔数学面试真题及答案
- 短视频平台内容监管与2025年社会责任责任评价体系研究报告
- 施工现场电气安全隐患题目及答案
- 磁学实验考试题及答案
- 新能源汽车行业技术考试内容解析与试题答案
- 新能源汽车售后服务体系发展试题及答案
- 教师宝典考试题及答案
- (正式版)SHT 3227-2024 石油化工装置固定水喷雾和水(泡沫)喷淋灭火系统技术标准
- 设计小白的创新工坊智慧树知到期末考试答案2024年
- 系统与软件工程 生存周期过程 需求工程 征求意见稿
- 【EHS领导力培训】安全领导力与执行力培训
- 液压课程设计液压课程设计
- 船员任职-解职信息修正工作单
- 机电安装移交及培训方案
- 陕09J01 建筑用料及做法图集
- 心电监护技术
- 餐厅销售技巧培训
- 2020版5MW风力发电机组安装手册风电机组安装手册
评论
0/150
提交评论