海南省临高县第二中学2024届高二上数学期末学业质量监测模拟试题含解析_第1页
海南省临高县第二中学2024届高二上数学期末学业质量监测模拟试题含解析_第2页
海南省临高县第二中学2024届高二上数学期末学业质量监测模拟试题含解析_第3页
海南省临高县第二中学2024届高二上数学期末学业质量监测模拟试题含解析_第4页
海南省临高县第二中学2024届高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省临高县第二中学2024届高二上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.2.已知双曲线,则双曲线M的渐近线方程是()A. B.C. D.3.已知圆,圆C2:x2+y2-x-4y+7=0,则“a=1”是“两圆内切”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.过点且垂直于直线的直线方程是()A. B.C. D.5.直线的斜率是()A. B.C. D.6.直线y=x+1与圆x2+y2=1的位置关系为A.相切B.相交但直线不过圆心C.直线过圆心D.相离7.给出下列结论:①如果数据的平均数为3,方差为0.2,则的平均数和方差分别为14和1.8;②若两个变量的线性相关性越强,则相关系数r的值越接近于1.③对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是().A.3 B.2C.1 D.08.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.639.某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万 B.64.72万C.66.81万 D.66.94万10.已知双曲线的离心率为2,且与椭圆有相同的焦点,则该双曲线的渐近线方程为()A. B.C. D.11.已知数列满足,,记数列的前n项和为,若对于任意,不等式恒成立,则实数k的取值范围为()A. B.C. D.12.直线的倾斜角为()A.0 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正方体的棱长为2,E、F分别是棱、的中点,点P为底面ABCD内(包括边界)的一动点,若直线与平面BEF无公共点,则点P的轨迹长度为______.14.函数单调增区间为______.15.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于两点(点在轴上方),_________16.在空间直角坐标系中,已知向量,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二次函数.(1)若时,不等式恒成立,求实数a的取值范围;(2)解关于x的不等式(其中).18.(12分)如图,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F为PA中点,,.四边形PDCE为矩形,线段PC交DE于点N(1)求证:AC∥平面DEF;(2)求二面角A-BC-P的余弦值19.(12分)已知椭圆经过点,(1)求椭圆的方程;(2)已知直线的倾斜角为锐角,与圆相切,与椭圆交于、两点,且的面积为,求直线的方程20.(12分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.21.(12分)已知抛物线上横坐标为3的点P到焦点F的距离为4.(1)求抛物线E的方程;(2)点A、B为抛物线E上异于原点O的两不同的点,且满足.若直线AB与椭圆恒有公共点,求m的取值范围.22.(10分)如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱锥S-ABCD的侧面积;(2)求平面SCD与平面SAB的夹角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.2、C【解析】由双曲线的方程直接求出见解析即可.【详解】由双曲线,则其渐近线方程为:故选:C3、B【解析】先得出圆的圆心和半径,求出两圆心间的距离,半径之差,根据两圆内切得出方程,从而得出答案.【详解】圆的圆心半径的圆心半径两圆心之间的距离为两圆的半径之差为当两圆内切时,,解得或所以当,可得两圆内切,当两圆内切时,不能得出(可能)故“”是“两圆内切”的充分不必要条件故选:B4、A【解析】根据所求直线垂直于直线,设其方程为,然后将点代入求解.【详解】因为所求直线垂直于直线,所以设其方程为,又因为直线过点,所以,解得所以直线方程为:,故选:A.5、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D6、B【解析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心所以直线与圆的位置关系是相交但直线不过圆心故选B考点:直线与圆的位置关系7、B【解析】对结论逐一判断【详解】对于①,则的平均数为,方差为,故①正确对于②,若两个变量的线性相关性越强,则相关系数r的绝对值越接近于1,故②错误对于③,对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为,故③正确故正确结论为2个故选:B8、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.9、D【解析】先求出样本点的中心,代入线性回归方程即可求出,再将代入线性回归方程即可得到结果【详解】由题意知:,,所以样本点的中心为,所以,解得:,可得线性回归方程为,年对应的年份代码为,令,则,所以预测2022年留学生回国人数为66.94万,故选:D.10、B【解析】求出焦点,则可得出,即可求出渐近线方程.【详解】由椭圆可得焦点为,则设双曲线方程为,可得,则离心率,解得,则,所以渐近线方程为.故选:B.11、C【解析】由已知得,根据等比数列的定义得数列是首项为,公比为的等比数列,由此求得,然后利用裂项求和法求得,进而求得的取值范围.【详解】解:依题意,当时,,则,所以数列是首项为,公比为的等比数列,,即,所以,所以,所以的取值范围是.故选:C.12、D【解析】根据斜率与倾斜角的关系求解即可.【详解】由题的斜率,故倾斜角的正切值为,又,故.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取BC中点G,证明平面平面确定点P的轨迹,再计算作答.【详解】在正方体中,取BC中点G,连接,如图,因E、F分别是棱、的中点,则,而平面,平面,则有平面,因,则,而,则有四边形为平行四边形,有,又平面,平面,于是得平面,而,平面,因此,平面平面,即线段AG是点P在底面ABCD内的轨迹,,所以点P的轨迹长度为.故答案为:14、【解析】利用导数法求解.【详解】因为函数,所以,当时,,所以的单调增区间是,故答案为:15、3【解析】根据抛物线焦半径公式,所以.故答案为:3.16、【解析】由题知,进而根据向量数量积运算的坐标表示求解即可.【详解】解:因为向量,所以,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)当时将原不等式变形为,根据基本不等式计算即可;(2)将原不等式化为,求出参数a分别取值、、时的解集.【小问1详解】不等式即为:,当时,不等式可变形为:,因为,当且仅当时取等号,所以,所以实数a的取值范围是;【小问2详解】不等式,即,等价于,转化为;当时,因为,所以不等式的解集为;当时,因为,所以不等式的解集为;当时,因为,所以不等式的解集为;综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.18、(1)证明见解析;(2).【解析】(1)记PC交DE于点N,然后证明FN∥AC,进而通过线面平行的判定定理证明问题;(2)建立空间直角坐标系,进而通过空间向量夹角公式求得答案.【小问1详解】因为四边形PDCE为矩形,线段PC交DE于点N,所以N为PC的中点连接FN,在△PAC中,F,N分别为PA,PC的中点,所以FN∥AC,因为平面DEF,平面DEF,所以AC∥平面DEF.【小问2详解】因为PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,所以DA,DC,DP两两垂直,如图以D为原点,分别以DA,DC,DP所在直线为x,y,z轴,建立空间直角坐标系则,,,,所以,设平面PBC的法向量为,则,令x=1,则.因为PD垂直于梯形ABCD所在的平面,所以是平面ABC的一个法向量,所以.由图可知所求二面角为锐角,即所求二面角的余弦值为.19、(1)(2)【解析】(1)将点M、N的坐标代入椭圆方程计算,求出a、b的值即可;(2)设l的方程为:,,根据直线与圆的位置关系可得,直线方程联立椭圆方程并消去y,利用韦达定理表示出,根据弦长公式求出,进而列出关于k的方程,解之即可.【小问1详解】椭圆经过点,则,解得,【小问2详解】设l的方程为:与圆相切设点,∴(则Δ>0,,,,,,,,,故,20、(1),600(2)【解析】用平均数及方差公式计算即可.用平均值得、之间的关系,再由,解不等式可得解.【小问1详解】甲类品牌汽车的排放量的平均值,甲类品牌汽车的排放量的方差.【小问2详解】由题意知乙类品牌汽车的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的排放量的方差,因为乙类品牌汽车比甲类品牌汽车的排放量稳定性好,所以,解得.21、(1)(2)【解析】(1)由焦半径公式可得,求解即可得答案;(2)由题意,直线AB斜率不为0,设,,联立直线与抛物线的方程,由韦达定理及可得,从而可得直线AB恒过定点,进而可得定点在椭圆内部或椭圆上即可求解.【小问1详解】解:因为抛物线上横坐标为3的点P到焦点F的距离为4,所以,解得,所以抛物线E的方程为;【小问2详解】解:由题意,直线AB斜率不为0,设,,由,可得,所以,因为,即,所以,所以,即,所以,所以直线,所以直线AB恒过定点,因为直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论