甘肃省定西市岷县二中2023-2024学年数学高二上期末预测试题含解析_第1页
甘肃省定西市岷县二中2023-2024学年数学高二上期末预测试题含解析_第2页
甘肃省定西市岷县二中2023-2024学年数学高二上期末预测试题含解析_第3页
甘肃省定西市岷县二中2023-2024学年数学高二上期末预测试题含解析_第4页
甘肃省定西市岷县二中2023-2024学年数学高二上期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省定西市岷县二中2023-2024学年数学高二上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.52.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定3.执行如图所示的程序框图,输出的值为()A. B.C. D.4.年1月初,中国多地出现散发病例甚至局部聚集性疫情,在此背景下,各地陆续发出“春节期间非必要不返乡”的倡议,鼓励企事业单位职工就地过年.某市针对非本市户籍并在本市缴纳社保,且春节期间在本市过年的外来务工人员,每人发放1000元疫情专项补贴.小张是该市的一名务工人员,则“他在该市过年”是“他可领取1000元疫情专项补贴”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.数列,,,,,中,有序实数对是()A. B.C. D.6.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.7.设双曲线与椭圆:有公共焦点,.若双曲线经过点,设为双曲线与椭圆的一个交点,则的余弦值为()A. B.C. D.8.圆与圆的位置关系是()A.相离 B.内含C.相切 D.相交9.在平面直角坐标系中,已知点,,,,直线AP,BP相交于点P,且它们斜率之积是.当时,的最小值为()A. B.C. D.10.已知函数的部分图象与轴交于点,与轴的一个交点为,如图所示,则下列说法错误的是()A. B.的最小正周期为6C.图象关于直线对称 D.在上单调递减11.元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的,输出的,则判断框中可以填()A. B.C. D.12.如图,已知、分别是椭圆的左、右焦点,点、在椭圆上,四边形是梯形,,且,则的面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线离心率__________.14.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为________.15.若等比数列的前n项和为,且,则__________.16.已知椭圆的两个焦点分别为,,,点在椭圆上,若,且的面积为4,则椭圆的标准方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求;(2)若,求的面积的最大值18.(12分)直线经过两直线和的交点(1)若直线与直线平行,求直线的方程;(2)若点到直线的距离为,求直线的方程19.(12分)某城市一入城交通路段限速60公里/小时,现对某时段通过该交通路段的n辆小汽车车速进行统计,并绘制成频率分布直方图(如图).若这n辆小汽车中,速度在50~60公里小时之间的车辆有200辆.(1)求n的值;(2)估计这n辆小汽车车速的中位数;(3)根据交通法规定,小车超速在规定时速10%以内(含10%)不罚款,超过时速规定10%以上,需要罚款.试根据频率分布直方图,以频率作为概率的估计值,估计某辆小汽车在该时段通过该路段时被罚款的概率.20.(12分)已知双曲线,直线l与交于P、Q两点(1)若点是双曲线的一个焦点,求的渐近线方程;(2)若点P的坐标为,直线l的斜率等于1,且,求双曲线的离心率21.(12分)在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0(1)求角C的大小(2)若c=2,a+b=ab,求△ABC的面积22.(10分)已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】作出可行域如图所示,把目标函数转化为,平移,经过点时,纵截距最大,所以的最大值为4.故选:C2、A【解析】∵且,∴,又,∴,故选A.3、B【解析】根据程序框图的循环逻辑写出其执行步骤,即可确定输出结果.【详解】由程序框图的逻辑,执行步骤如下:1、:执行循环,,;2、:执行循环,,;3、:执行循环,,;4、:执行循环,,;5、:执行循环,,;6、:不成立,跳出循环.∴输出的值为.故选:B.4、B【解析】根据充分条件、必要条件的定义进行判定.【详解】只有非本市户籍并在本市缴纳社保的外来务工人员就地过年,才可领取1000元疫情专项补贴,小张是该市的一名务工人员,但他可能是本市户籍或非本市户籍但在本市未缴纳社保,所以“他在该市过年”是“他可领取1000元疫情专项补贴”的必要不充分条件.故选:B.5、A【解析】根据数列的概念,找到其中的规律即可求解.【详解】由数列,,,,,可知,,,,,则,解得,故有序实数对是,故选:6、C【解析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【点睛】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.7、A【解析】求出双曲线方程,根据椭圆和双曲线的第一定义求出的长度,从而根据余弦定理求出的余弦值【详解】由题得,双曲线中,所以,双曲线方程为:,假设在第一象限,根据椭圆和双曲线的定义可得:,解得:,,所以根据余弦定理,故选:A8、D【解析】先由圆的方程得出两圆的圆心坐标和半径,求出两圆心间的距离与两半径之和与差比较可得答案.【详解】圆的圆心为,半径为圆的圆心为,半径为两圆心间的距离为由,所以两圆相交.故选:D9、A【解析】设出点坐标,求得、所在直线的斜率,由斜率之积是列式整理即可得到点的轨迹方程,设,根据双曲线的定义,从而求出的最小值;【详解】解:设点坐标为,则直线的斜率;直线的斜率由已知有,化简得点的轨迹方程为又,所以点的轨迹方程为,即点的轨迹为以、为顶点的双曲线的左支(除点),因为,设,由双曲线的定义可知,所以,当且仅当、、三点共线时取得最小值,因为,所以,所以,即的最小值为;故选:A10、D【解析】根据函数的图象求出,再利用函数的性质结合周期公式逆推即可求解.【详解】因为函数的图象与轴交于点,所以,又,所以,A正确;因为的图象与轴的一个交点为,即,所以,又,解得,所以,所以,求得最小正周期为,B正确;,所以是的一条对称轴,C正确;令,解得,所以函数在,上单调递减,D错误故选:D.11、D【解析】根据程序框图的算法功能,模拟程序运行即可推理判断作答.【详解】由程序框图知,直到型循环结构,先执行循环体,条件不满足,继续执行循环体,条件满足跳出循环体,则有:当第一次执行循环体时,,,条件不满足,继续执行循环体;当第二次执行循环体时,,,条件不满足,继续执行循环体;当第三次执行循环体时,,,条件不满足,继续执行循环体;当第四次执行循环体时,,,条件不满足,继续执行循环体;当第五次执行循环体时,,,条件满足,跳出循环体,输出,于是得判断框中的条件为:,所以判断框中可以填:.故选:D12、A【解析】设点关于原点的对称点为点,连接、,分析可知、、三点共线,设点、,设直线的方程为,分析可知,将直线的方程与椭圆的方程联立,列出韦达定理,求出的值,可得出的值,再利用三角形的面积公式可求得结果.【详解】设点关于原点的对称点为点,连接、,如下图所示:因为为、的中点,则四边形为平行四边形,可得且,因为,故、、三点共线,设、,易知点,,,由题意可知,,可得,若直线与轴重合,设,,则,不合乎题意;设直线的方程为,联立,可得,由韦达定理可得,得,,则,可得,故,因此,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知得到a,b,再利用及即可得到答案.【详解】由已知,可得,所以,所以.故答案为:14、1560【解析】先把6名技术人员分成4组,每组至少一人,有两种情况:(1)4个组的人数按3,1,1,1分配,(2)4个组的人数为2,2,1,1,求出所有的分组方法,然后再把4个组的人分给4个分厂,从而可求得答案【详解】先把6名技术人员分成4组,每组至少一人.(1)若4个组的人数按3,1,1,1分配,则不同的分配方案有(种).(2)若4个组的人数为2,2,1,1,则不同的分配方案有(种).故所有分组方法共有20+45=65(种).再把4个组的人分给4个分厂,不同的方法有(种).故答案为:156015、5【解析】根据题意和等比数列的求和公式,求得,结合求和公式,即可求解.【详解】因为,若时,可得,故,所以,化简得,整理得,解得或,因为,解得,所以.故答案为:.16、【解析】由题意得到为直角三角形.设,,根据椭圆的离心率,定义,直角三角形的面积公式,勾股定理建立方程的方程组,消元后可求得的值.【详解】由题可知,∴,又,代入上式整理得,由得为直角三角形又的面积为4,设,,则解得所以椭圆的标准方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由正弦定理将边化为角,结合三角函数的两角和的正弦公式,可求得答案;(2)由余弦定理结合基本不等式可求得,再利用三角形面积公式求得答案.【小问1详解】由正弦定理及,得,∵∴,∵,∴【小问2详解】由余弦定理,∴,即,当且仅当时取等号,∴,当且仅当时等号成立,∴的面积的最大值为18、(1)(2)或【解析】(1)由题意两立方程组,求两直线的交点的坐标,利用两直线平行的性质,用待定系数法求出的方程(2)分类讨论直线的斜率,利用点到直线的距离公式,用点斜式求直线的方程【小问1详解】解:由,解得,所以两直线和的交点为当直线与直线平行,设的方程为,把点代入求得,可得的方程为【小问2详解】解:斜率不存在时,直线方程为,满足点到直线的距离为5当的斜率存在时,设直限的方程为,即,则点到直线的距离为,求得,故的方程为,即综上,直线的方程为或19、(1)(2)(3)【解析】(1)根据已知条件,结合频率与频数的关系,即可求解(2)根据已知条件,结合中位数公式,即可求解(3)在这500辆小车中,有40辆超速,再结合古典概型的概率公式,即可求解【小问1详解】解:由直方图可知,速度在公里小时之间的频率为,所以,解得【小问2详解】解:设这辆小汽车车速的中位数为,则,解得小问3详解】解:由交通法则可知,小车速度在66公里小时以上需要罚款,由直方图可知,小车速度在之间有辆,由统计的有关知识,可以认为车速在公里小时之间的小车有辆,小车速度在之间有辆,故估计某辆小汽车在该时段通过该路段时被罚放的概率为20、(1)(2)或【解析】(1)根据题意可得,又因为且,解得,可得双曲线方程,进而可得的渐近线方程(2)设直线的方程为:,,,联立直线与双曲线方程,可得关于的一元二次方程,由韦达定理可得,,再由两点之间距离公式得,解得,进而由可求出,即可求得离心率.【小问1详解】∵点是双曲线的一个焦点,∴,又∵且,解得,∴双曲线方程为,∴的渐近线方程为:;小问2详解】设直线的方程为,且,,联立,可得,则,∴,即,∴,解得或,即由可得或,故双曲线的离心率或.21、(1);(2).【解析】(1)由题意首先利用正弦定理边化角,据此求得,则角C的大小是;(2)由题意结合余弦定理可得,然后利用面积公式可求得△ABC的面积为.试题解析:(1)∵c•cosB+(b-2a)cosC=0,由正弦定理化简可得:sinCcosB+sinBcosC-2sinAcosC=0,即sinA=2sinAcosC,∵0<A<π,∴sinA≠0.∴cosC=.∵0<C<π,∴C=.(2)由(1)可知:C=.∵c=2,a+b=ab,即a2b2=a2+b2+2ab.由余弦定理cosC==,∴ab=(ab)2-2ab-c2.可得:ab=4.那么:△ABC的面积S=absinC=.22、(1)(2)【解析】(1)根据椭圆的简单几何性质知,又,写出椭圆的方程;(2)先斜截式设出直线,联立方程组,根据直线与圆锥曲线的位置关系,可得出中点为的坐标,再根据△为等腰三角形知,从而得的斜率为,求出,写出:,并计算,再根据点到直线距离公式求高,即可计算出面积【详解】(1)由已知得,,解得,又,所以椭圆的方程为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论