广东六校联盟2024届数学高二上期末联考模拟试题含解析_第1页
广东六校联盟2024届数学高二上期末联考模拟试题含解析_第2页
广东六校联盟2024届数学高二上期末联考模拟试题含解析_第3页
广东六校联盟2024届数学高二上期末联考模拟试题含解析_第4页
广东六校联盟2024届数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东六校联盟2024届数学高二上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在区间上的函数满足:对恒成立,其中为的导函数,则A.B.C.D.2.如图①所示,将一边长为1的正方形沿对角线折起,形成三棱锥,其主视图与俯视图如图②所示,则左视图的面积为()A. B.C. D.3.设,则曲线在点处的切线的倾斜角是()A. B.C. D.4.已知等比数列的首项为1,公比为2,则=()A. B.C. D.5.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.6.已知,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件7.已知向量,,若与共线,则实数值为()A. B.C.1 D.28.已知直线过点,且其方向向量,则直线的方程为()A. B.C. D.9.函数在单调递增的一个必要不充分条件是()A. B.C. D.10.设是空间一定点,为空间内任一非零向量,满足条件的点构成的图形是()A.圆 B.直线C.平面 D.线段11.日常饮用水通常都是经过净化的,随若水纯净度的提高,所需净化费用不断增加.已知水净化到纯净度为时所需费用单位:元为那么净化到纯净度为时所需净化费用的瞬时变化率是()元/t.A. B.C. D.12.已知正数x,y满足,则取得最小值时()A. B.C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数有三个零点,则正实数a的取值范围为_________14.已知,动点满足,则点的轨迹方程为___________.15.已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.16.已知函数,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆的离心率为,设为坐标原点,为椭圆的左顶点,动直线过线段的中点,且与椭圆相交于、两点.已知当直线的倾斜角为时,(1)求椭圆的标准方程;(2)是否存在定直线,使得直线、分别与相交于、两点,且点总在以线段为直径的圆上,若存在,求出所有满足条件的直线的方程;若不存在,请说明理由18.(12分)已知抛物线,直线与交于两点且(为坐标原点)(1)求抛物线的方程;(2)设,若直线的倾斜角互补,求的值19.(12分)已知椭圆的焦距为4,点在G上.(1)求椭圆G方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.20.(12分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.21.(12分)如图,在四棱锥中,四边形是直角梯形,,,,为等边三角形.(1)证明:;(2)求点到平面的距离.22.(10分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分别构造函数,,,,利用导数研究其单调性即可得出【详解】令,,,,恒成立,,,,函数在上单调递增,,令,,,,恒成立,,函数在上单调递减,,.综上可得:,故选:D【点睛】函数的性质是高考的重点内容,本题考查的是利用函数的单调性比较大小的问题,通过题目中给定的不等式,分别构造两个不同的函数求导判出单调性从而比较函数值得大小关系.在讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响2、A【解析】由视图确定该几何体的特征,即可得解.【详解】由主视图可以看出,A点在面上的投影为的中点,由俯视图可以看出C点在面上的投影为的中点,所以其左视图为如图所示的等腰直角三角形,直角边长为,于是左视图的面积为故选:A.3、C【解析】根据导数的概念可得,再利用导数的几何意义即可求解.【详解】因为,所以,则曲线在点处的切线斜率为,故所求切线的倾斜角为.故选:C4、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D5、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误6、C【解析】根据充要条件的定义进行判断【详解】解:因为函数为增函数,由,所以,故“”是“”的充分条件,由,所以,故“”是“”的必要条件,故“”是“”的充要条件故选:C7、D【解析】根据空间向量共线有,,结合向量的坐标即可求的值.【详解】由题设,有,,则,可得.故选:D8、D【解析】根据题意和直线的点方向式方程即可得出结果.【详解】因为直线过点,且方向向量为,由直线的点方向式方程,可得直线的方程为:,整理,得.故选:D9、D【解析】求出导函数,由于函数在区间单调递增,可得在区间上恒成立,求出的范围,再根据充分必要条件的定义即可判断得解.【详解】由题得,函数在区间单调递增,在区间上恒成立,而在区间上单调递减,选项中只有是的必要不充分条件.选项AC是的充分不必要条件,选项B是充要条件.故选:D10、C【解析】根据法向量的定义可判断出点所构成的图形.【详解】是空间一定点,为空间内任一非零向量,满足条件,所以,构成的图形是经过点,且以为法向量的平面.故选:C.【点睛】本题考查空间中动点的轨迹,考查了法向量定义的理解,属于基础题.11、B【解析】由题意求出函数的导函数,然后令即可求解【详解】因为,所以,则,故选:12、B【解析】根据基本不等式进行求解即可.【详解】因为正数x,y,所以,当且仅当时取等号,即时,取等号,而,所以解得,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导易得函数有两个极值点和,根据题意,由求解.【详解】由,可得函数有两个极值点和,,,若函数有三个零点,必有解得或故答案为:14、【解析】表示出、,根据题意,列出等式,化简整理即可得答案.【详解】,由题意得,所以整理可得,即.故答案为:.15、【解析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知,由中位线定理可得,设可得,联立方程可解得(舍),点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16、.【解析】将代入计算,利用和互为相反数,作差可得,计算可得结果.【详解】解:函数则.,,作差可得:,即,解得:代入此时成立.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,且直线的方程为或【解析】(1)分析可知,,直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,利用弦长公式可求得的值,即可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线方程与椭圆的方程联立,列出韦达定理,求出点、,由已知得出,求出的值,即可得出结论.【小问1详解】解:因为,则,,所以,椭圆的方程为,即,易知点,则点,当直线的倾斜角为时,直线的方程为,设点、,联立,可得,,由韦达定理可得,,所以,,解得,则,,因此,椭圆的标准方程为.【小问2详解】解:易知点,若直线与轴重合,则、为椭圆长轴的两个端点,不合乎题意.设直线的方程为,设点、,联立,可得,,由韦达定理可得,,直线的斜率为,直线的方程为,故点,同理可得点,,,由题意可得,解得或.因此,存在满足题设条件的直线,且直线的方程为或,点总在以线段为直径的圆上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.18、(1);(2).【解析】(1)利用韦达定理法即求;(2)由题可求,,再结合条件即得.【小问1详解】设,,由,得,故,由,可得,即,∴,故抛物线的方程为:;【小问2详解】设的倾斜角为,则的倾斜角为,∴由,得,∴,∴,同理,由,得,∴,即,故.19、(1);(2).【解析】(1)根据已知求出即得椭圆的方程;(2)设l的方程为,,,联立直线和椭圆的方程得到韦达定理,根据得到,即得直线l的方程.【小问1详解】解:椭圆的焦距是4,所以焦点坐标是,.因为点在G上,所以,所以,.所以椭圆G的方程是.【小问2详解】解:显然直线l不垂直于x轴,可设l的方程为,,,将直线l的方程代入椭圆G的方程,得,则,.因为,所以,则,即,由,得,.所以,解得,即,所以直线l的方程为.20、(1)证明见解析;(2);【解析】(1)证明,利用面面垂直的性质可得出平面,再利用面面垂直的判定定理可证得平面平面;(2)连接,以点为坐标原点,、、所在直线分别为轴建立空间直角坐标系,设,根据可得出,求出的值,利用空间向量法可求得直线与所成角的余弦值.【详解】(1)为的中点,且,则,又因为,则,故四边形为平行四边形,因为,故四边形为矩形,所以,平面平面,平面平面,平面,平面,因为平面,因此,平面平面;(2)连接,由(1)可知,平面,,为的中点,则,以点为坐标原点,所在直线分别为轴建立空间直角坐标系,则、、、、,设,,因为,则,解得,,,则.因此,直线与所成角的余弦值为.21、(1)略;(2)【解析】(1)推导出BD⊥BC,PB⊥BC,从而BC⊥平面PBD,由此能证明PD⊥BC.(2)利用等体积求得点B到面的距离【详解】(1)∵在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC为等边三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD⊂平面PBD,∴PD⊥BC(2)由(1)知,,故故得点B到面PCD的距离为【点睛】本题考查线线垂直的证明,考查点面距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题22、【解析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E-ACD的体积试题解析:(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD中点又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)因为PA⊥平面ABCD,ABCD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论