广东省番禺区广东第二师范学院番禺附中2023-2024学年高二数学第一学期期末联考模拟试题含解析_第1页
广东省番禺区广东第二师范学院番禺附中2023-2024学年高二数学第一学期期末联考模拟试题含解析_第2页
广东省番禺区广东第二师范学院番禺附中2023-2024学年高二数学第一学期期末联考模拟试题含解析_第3页
广东省番禺区广东第二师范学院番禺附中2023-2024学年高二数学第一学期期末联考模拟试题含解析_第4页
广东省番禺区广东第二师范学院番禺附中2023-2024学年高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省番禺区广东第二师范学院番禺附中2023-2024学年高二数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是A. B.C D.3.函数的导数记为,则等于()A. B.C. D.4.椭圆的一个焦点坐标为,则实数m的值为()A.2 B.4C. D.5.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.66.已知函数,若函数有3个零点,则实数的取值范围是()A. B.C. D.7.若x,y满足约束条件,则的最大值为()A.1 B.0C.−1 D.−38.,则与分别为()A.与 B.与C.与0 D.0与9.在等差数列{an}中,a1=2,a5=3a3,则a3等于()A.-2 B.0C.3 D.610.已知,则“”是“”的()A.充分不必要条件 B.充要条件C.必要不充分条件 D.既不充分也不必要条件11.已知为等腰直角三角形的直角顶点,以为旋转轴旋转一周得到几何体,是底面圆上的弦,为等边三角形,则异面直线与所成角的余弦值为()A. B.C. D.12.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知函数f(x)=ex-2x+a有零点,则a的取值范围是___________14.已知直线:与直线:平行,则的值为___________.15.函数的最小值为______.16.抛物线C:的焦点F,其准线过(-3,3),过焦点F倾斜角为的直线交抛物线于A,B两点,则p=___________;弦AB的长为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图①,等腰梯形中,,分别为的中点,,现将四边形沿折起,使平面平面,得到如图②所示的多面体,在图②中:(1)证明:平面平面;(2)求四棱锥的体积.18.(12分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)若、是曲线上两点,点满足求直线的方程.19.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分20.(12分)已知椭圆的长轴长是6,离心率是.(1)求椭圆E的标准方程;(2)设O为坐标原点,过点的直线l与椭圆E交于A,B两点,判断是否存在常数,使得为定值?若存在,求出的值;若不存在,请说明理由.21.(12分)已知在△ABC中,角A,B,C的对边分别为a,b,c,且(1)求C;(2)若,求的最大值22.(10分)已知函数.(1)当时,求的极值;(2)当时,,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用函数在递减求解.【详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A2、B【解析】构造函数,可知函数为奇函数,利用导数分析出函数在上的单调性,并得出,然后分别在和解不等式,由此可得出不等式的解集.【详解】构造函数,该函数的定义域为,由于函数为上的奇函数,则,所以,函数为上的奇函数,且,,.当时,,此时,函数单调递增,由,可得,解得;当时,则函数单调递增,由,可得,解得.综上所述,使得成立的的取值范围是.故选:B.【点睛】本题考查利用函数的单调性求解函数不等式,根据导数不等式的结构构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.3、D【解析】求导后代入即可.【详解】,.故选:D.4、C【解析】由焦点坐标得到,求解即可.【详解】根据焦点坐标可知,椭圆焦点在y轴上,所以有,解得故选:C.5、C【解析】利用椭圆的定义直接求解【详解】由题意得,得,因为,,所以,故选:C6、B【解析】构造,通过求导,研究函数的单调性及极值,最值,画出函数图象,数形结合求出实数的取值范围.【详解】令,即,令,当时,,,令得:或,结合,所以,令得:,结合得:,所以在处取得极大值,也是最大值,,当时,,且,当时,,则恒成立,单调递增,且当时,,当时,,画出的图象,如下图:要想有3个零点,则故选:B7、B【解析】先画出可行域,由,得,作出直线,过点时,取得最大值,求出点的坐标代入目标函数中可得答案【详解】不等式组表示的可行域如图所示,由,得,作出直线,过点时,取得最大值,由,得,即,所以的最大值为,故选:B8、C【解析】利用正弦函数和常数导数公式,结合代入法进行求解即可.【详解】因为,所以,所以,,故选:C9、A【解析】利用已知条件求得,由此求得.【详解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故选:A.10、B【解析】求得中的取值范围,由此确定充分、必要条件.【详解】,,所以“”是“”的充要条件.故选:B11、B【解析】设,过点作的平行线,与平行的半径交于点,找出异面直线与所成角,然后通过解三角形可得出所求角的余弦值.【详解】设,过点作的平行线,与平行的半径交于点,则,,所以为异面直线与所成的角,在三角形中,,,所以.故选:B.【点睛】本题考查异面直线所成角余弦值的计算,一般通过平移直线的方法找到异面直线所成的角,考查计算能力,属于中等题.12、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据零点定义,分离出,构造函数,通过研究的值域来确定的取值范围【详解】根据零点定义,则所以令则,令解得当时,,函数单调递减当时,,函数单调递增所以当时取得最小值,最小值为所以由零点的条件为所以,即的取值范围为【点睛】本题考查了函数零点的意义,通过导数求函数的值域,分离参数法的应用,属于中档题14、-1【解析】根据两直线平行的条件列式求解即可.【详解】由题意可知,的斜率,的斜率,∵,∴解得.故当时,直线:与直线:平行.故答案为:-1.15、1【解析】由解析式知定义域为,讨论、、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.16、①.6;②.48.【解析】先通过准线求出p,写出抛物线方程和直线方程,联立得出,进而求出弦AB的长.【详解】由知准线方程为,又准线过(-3,3),可得,;焦点坐标为,故直线方程为,和抛物线方程联立,,得,故,又.故答案为:6;48.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)2【解析】(1)根据面面平行的判定定理结合已知条件即可证明;(2)将所求四棱锥的体积转化为求即可.【小问1详解】证明:因为,面,面,所以面,同理面,又因为面,所以面面.【小问2详解】解:因为在图①等腰梯形中,分别为的中点,所以,在图②多面体中,因为,面,,所以面.因为,面面,面,面面,所以面,又因为面,所以,在直角三角形中,因为,所以,同理,,所以,则,有,所以.所以四棱锥的体积为2.18、(1);(2).【解析】(1)根据两圆内切,以及圆过定点列式求轨迹方程;(2)利用重心坐标公式可知,,再设直线的方程为与椭圆方程联立,利用根与系数的关系求解直线方程.【详解】(1)由已知可得,两式相加可得则点的轨迹是以、为焦点,长轴长为的椭圆,则因此曲线的方程是(2)因为,则点是的重心,易得直线的斜率存在,设直线的方程为,联立消得:且①②由①②解得则直线的方程为即【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据求得,.19、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为点C到直线的距离,所以直线被圆C截得的弦长为20、(1);(2)存在,.【解析】(1)根据给定条件求出椭圆长短半轴长即可代入计算作答.(2)当直线l的斜率存在时,设出直线l的方程,与椭圆E的方程联立,利用韦达定理、向量数量积运算,推理计算作答.【小问1详解】依题意,,半焦距为c,则离心率,即,有,所以椭圆E的标准方程为:.【小问2详解】当直线l的斜率存在时,设直线l的方程为,由消去y并整理得:,设,则,,,,,,要使为定值,必有,解得,此时,当直线l的斜率不存在时,由对称性不妨令,,,当时,,即当时,过点的任意直线l与椭圆E交于A,B两点,恒有,所以存在满足条件.【点睛】方法点睛:求定值问题常见的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值21、(1);(2).【解析】(1)将题设条件化为,结合余弦定理即可知C的大小.(2)由(1)及正弦定理边角关系可得,再应用辅助角公式、正弦函数的性质即可求最大值.【小问1详解】由,得,即,由余弦定理得:,又,所以【小问2详解】由(1)知:,则,设△ABC外接圆半径为R,则,当时,取得最大值为22、(1)极大值,没有极小值(2)【解析】(1)把代入,然后对函数求导,结合导数可求函数单调区间,即可得解;(2)构造函数,将不等式的恒成立转化为函数的最值问题,结合导数与单调性及函数的性质对进行分类讨论,其中当和时易判断函数的单调性以及最小值,而当时,的最小值与0进一步判断【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论