广东省惠州市惠港中学2023-2024学年高二上数学期末综合测试模拟试题含解析_第1页
广东省惠州市惠港中学2023-2024学年高二上数学期末综合测试模拟试题含解析_第2页
广东省惠州市惠港中学2023-2024学年高二上数学期末综合测试模拟试题含解析_第3页
广东省惠州市惠港中学2023-2024学年高二上数学期末综合测试模拟试题含解析_第4页
广东省惠州市惠港中学2023-2024学年高二上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省惠州市惠港中学2023-2024学年高二上数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的焦点到渐近线的距离为()A.1 B.2C. D.2.函数的导函数的图象如图所示,则下列说法正确的是()A.函数在上单调递增B.函数的递减区间为C.函数在处取得极大值D.函数在处取得极小值3.等比数列的前项和为,若,则()A. B.8C.1或 D.或4.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔为()A.40 B.30C.20 D.125.已知数列的前n项和为,,,则=()A. B.C. D.6.已知是椭圆两个焦点,P在椭圆上,,且当时,的面积最大,则椭圆的标准方程为()A. B.C. D.7.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.8.已知等比数列的前项和为,公比为,则()A. B.C. D.9.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.1410.如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为,的面积为,并向正方形中随机投掷个点,用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率为附表:A. B.C. D.11.已知命题p:,,则命题p的否定为()A., B.,C, D.,12.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥0二、填空题:本题共4小题,每小题5分,共20分。13.已知点,平面过,,三点,则点到平面的距离为________.14.若圆和圆的公共弦所在的直线方程为,则______15.“”是“”的________条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一项填空.)16.已知斜率为的直线与椭圆相交于不同的两点A,B,M为y轴上一点且满足|MA|=|MB|,则点M的纵坐标的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,已知点、,点M满足,记点M的轨迹为C(1)求C的方程;(2)若直线l过圆圆心D且与圆交于A,B两点,点P为C上一个动点,求的最小值18.(12分)公差不为零的等差数列中,已知其前n项和为,若,且成等比数列(1)求数列的通项;(2)当时,求数列的前n和19.(12分)已知在数列中,,且.(1)求,,并证明数列是等比数列;(2)求的通项公式及前n项和.20.(12分)已知在长方形ABCD中,AD=2AB=2,点E是AD的中点,沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求证:在四棱锥A-BCDE中,AB⊥AC.(2)在线段AC上是否存在点F,使二面角A-BE-F的余弦值为?若存在,找出点F的位置;若不存在,说明理由.21.(12分)已知是函数的一个极值点.(1)求实数的值;(2)求函数在区间上的最大值和最小值.22.(10分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x经过点A(1,2),直线l:y=kx+b与抛物线C交于M,N两点.(1)若,求直线l的方程;(2)当AM⊥AN时,若对任意满足条件的实数k,都有b=mk+n(m,n为常数),求m+2n的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分别求出双曲线的焦点坐标和渐近线方程,利用点到直线的距离公式求出结果【详解】双曲线中,焦点坐标为渐近线方程为:∴双曲线的焦点到渐近线的距离故选:A2、C【解析】根据函数单调性与导数之间的关系及极值的定义结合图像即可得出答案.【详解】解:根据函数的导函数的图象可得,当时,,故函数在和上递减,当时,,故函数在和上递增,所以函数在和处取得极小值,在处取得极大值,故ABD错误,C正确.故选:C.3、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.4、B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:故选:B【点睛】本题考查系统抽样的概念,属基础题.5、D【解析】利用公式计算得到,得到答案【详解】由已知得,即,而,所以故选:D6、A【解析】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,即可解出【详解】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,∵时,△F1PF2的面积最大,∴a==,b=∴椭圆的标准方程为故选:A7、A【解析】由函数在上单调递增,可得,从而可求出实数的取值范围【详解】由,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,因为,所以,所以,所以实数的取值范围为,故选:A8、D【解析】利用等比数列的求和公式可求得的值.【详解】由等比数列的求和公式可得,解得.故选:D.9、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.10、D【解析】每个点落入中的概率为,设落入中的点的数目为,题意所求概率为故选D11、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.12、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求得平面ABC的一个法向量,然后由求解.【详解】因为,,,,所以,设平面ABC的一个法向量为,则,即,令,则,所以则点到平面的距离为,故答案:14、【解析】由两圆公共弦方程,将两圆方程相减得到,结合已知列方程组求、,即可得答案.【详解】由题设,两圆方程相减可得:,即为公共弦,∴,可得,∴.故答案为:.15、充分不必要【解析】由不等式的性质可知,由得,反之代入进行验证,然后根据充分性与必要性的定义进行判断,即可得出所要的答案【详解】解:由不等式的性质可知,由得,故“”成立可推出“”,而,当,则,所以“”不能保证“”,故“”是“”成立的充分不必要条件.故答案为:充分不必要【点睛】本题考查充分条件与必要条件的判断,结合不等式的性质,属于较简单题型16、【解析】设直线的方程为,由消去并化简得,设,,,解得..由于,所以是垂直平分线与轴的交点,垂直平分线方程为,令得,由于,所以.也即的纵坐标的取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)23【解析】(1)根据双曲线的定义判断轨迹,直接写出轨迹方程即可;(2)设,利用向量坐标运算计算,再由二次函数求最值即可.【小问1详解】由,则轨迹C是以点、为左、右焦点的双曲线的右支,设轨迹C的方程为,则,可得,,所以C的方程为;【小问2详解】设,则,且,圆心,则因为,则当时,取最小值23.18、(1)(2)【解析】(1)根据等差数列的性质,结合题意,可求得值,根据成等比数列,即可求得d值,代入等差数列通项公式,即可得答案;(2)由(1)可求得,即可得表达式,根据裂项相消求和法,即可得答案.【小问1详解】设等差数列的公差为,由等差数列性质可得,解得,又成等比数列,所以,整理得,因为,所以,所以【小问2详解】由(1)可得,则,所以,所以19、(1),,证明见解析(2),【解析】(1)根据递推关系求出,,对递推公式变形,即可得证;(2)结合(1)求得通项公式,分组求和.【小问1详解】因为,且所以,,∵,∴,∵,∴,且,∴数列是等比数列.【小问2详解】由(1)可知是以为首项,以3为公比的等比数列,即,即;.20、(1)证明见解析(2)点F为线段AC的中点【解析】(1)由平面几何知识证得CE⊥BE,再根据面面垂直的性质,线面垂直的判定和性质可得证;(2)取BE的中点O,以O为原点,分别以的方向为x轴,y轴,z轴建立空间直角坐标系,假设在线段AC上存在点F,设=λ,运用二面角的向量求解方法可求得,可得点F的位置.【小问1详解】证明:因为在长方形ABCD中,AD=2AB=2,点E是AD的中点,所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小问2详解】解:存在点F,F为线段AC的中点.由(1)得△ABE和△BEC均为等腰直角三角形,取BE的中点O,则,又平面ABE⊥平面BCDE,面面,所以面,以O为原点,分别以的方向为x轴,y轴,z轴建立空间直角坐标系,如图所示,取平面ABE的一个法向量为.假设在线段AC上存在点F,使二面角A-BE-F的余弦值为.则A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),设=λ,则+λ=(1-λ,2λ,1-λ),又=(2,0,0),设平面BEF的法向量为,可得,即得,可取y=1,得,所以,解得λ=,即当点F为线段AC的中点时,二面角A-BE-F的余弦值为.21、(1)3(2),【解析】(1)先求出函数的导数,根据极值点可得导数的零点,从而可求实数的值;(2)由(1)可得函数的单调性,从而可求最值.【小问1详解】,是的一个极值点,.,,此时,令,解剧或,令,解得,故为的极值点,故.【小问2详解】由(1)可得在上单调递增,在上单调递减,故在上为增函数,在上为减函数,.又22、(1)(2)3或【解析】(1)由可得,则可得直线为,设,然后将直线方程代入抛物线方程中消去,再利用根与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论