




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省蓝精灵中学2024届数学高二上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在流行病学中,基本传染数是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设某种传染病的基本传染数,平均感染周期为4天,那么感染人数超过1000人大约需要()(初始感染者传染个人为第一轮传染,这个人每人再传染个人为第二轮传染)A.20天 B.24天C.28天 D.32天2.已知正实数a,b满足,若不等式对任意的实数x恒成立,则实数m的取值范围是()A. B.C. D.3.已知O为坐标原点,,点P是上一点,则当取得最小值时,点P的坐标为()A. B.C. D.4.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值5.下列双曲线中,焦点在轴上且渐近线方程为的是A. B.C. D.6.已知定义在上的函数满足下列三个条件:①当时,;②的图象关于轴对称;③,都有.则、、的大小关系是()A. B.C. D.7.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为50的样本,则分段的间隔为()A.20 B.25C.40 D.508.由于受疫情的影响,学校停课,同学们通过三种方式在家自主学习,现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若,则本次自主学习学生的满意度不低于四成C.总体中对方式二满意学生约为300人D.样本中对方式一满意的学生为24人9.知点分别为圆上的动.点,为轴上一点,则的最小值()A. B.C. D.10.已知空间向量,且与垂直,则等于()A.-2 B.-1C.1 D.211.在三棱柱中,,,,则这个三棱柱的高()A1 B.C. D.12.在二项式的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,则有理项互不相邻的概率()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左、右焦点分别为、,关于原点对称的点A、B在椭圆上,且满足,若令且,则该椭圆离心率的取值范围为___________14.已知某地区内猫的寿命超过10岁的概率为0.9,超过12岁的概率为0.6,那么该地区内,一只寿命超过10岁的猫的寿命超过12岁的概率为___________.15.执行如图所示的程序框图,则输出的结果________16.已知O为坐标原点,,是抛物线上的两点,且满足,则______;若OM垂直AB于点M,且为定值,则点Q的坐标为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在半径为6m的圆形O为圆心铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面不计剪裁和拼接损耗,设矩形的边长|AB|xm,圆柱的体积为Vm3.(1)写出体积V关于x的函数关系式,并指出定义域;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大最大体积是多少?18.(12分)已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围19.(12分)已知函数(1)求的单调区间;(2)若,求的最大值与最小值20.(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.21.(12分)自2021年秋季起,江西省普通高中起始年级全面实施新课程改革,为了迎接新高考,某校举行物理和化学等选科考试,其中600名学生化学成绩(满分100分)的频率分布直方图如图所示,其中成绩分组区间是:第一组,第二组,第三组,第四组,第五组.已知图中前三个组的频率依次构成等差数列,第一组和第五组的频率相同(1)求a,b的值;(2)估算高分(大于等于80分)人数;(3)估计这600名学生化学成绩的平均值(同一组中的数据用该组区间的中点值作代表)和中位数(中位数精确到0.1)22.(10分)已知抛物线C:经过点(1,-1).(1)求抛物线C的方程及其焦点坐标;(2)过抛物线C上一动点P作圆M:的一条切线,切点为A,求切线长|PA|的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意列出方程,利用等比数列的求和公式计算n轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n轮传染,则每轮新增感染人数为,经过n轮传染,总共感染人数为:即,解得,所以感染人数由1个初始感染者增加到1000人大约需要24天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程2、D【解析】利用基本不等式求出的最小值16,分离参数即可.【详解】因为,,,所以,当且仅当,即,时取等号由题意,得,即对任意的实数x恒成立,又,所以,即故选:D3、A【解析】根据三点共线,可得,然后利用向量的减法坐标运算,分别求得,最后计算,经过化简观察,可得结果.【详解】设,则则∴当时,取最小值为-10,此时点P的坐标为.故选:A【点睛】本题主要考查向量数量积的坐标运算,难点在于三点共线,审清题干,简单计算,属基础题.4、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B5、C【解析】焦点在轴上的是C和D,渐近线方程为,故选C考点:1.双曲线的标准方程;2.双曲线的简单几何性质6、A【解析】推导出函数为偶函数,结合已知条件可得出,,,利用导数可知函数在上为减函数,由此可得出、、的大小关系.【详解】因为函数的图象关于轴对称,则,故,,又因为,都有,所以,,所以,,,,因为当时,,,当且仅当时,等号成立,且不恒为零,故函数在上为减函数,因为,则,故.故选:A.7、A【解析】根据系统抽样定义可求得结果【详解】分段的间隔为故选:A8、B【解析】利用扇形统计图和条形统计图可求出结果【详解】选项A,样本容量为,该选项正确;选项B,根据题意得自主学习的满意率,错误;选项C,样本可以估计总体,但会有一定的误差,总体中对方式二满意人数约为,该选项正确;选项D,样本中对方式一满意人数为,该选项正确.故选:B【点睛】本题主要考查了命题真假的判断,考查扇形统计图和条形统计图等基础知识,考查运算求解能力,属于中档题9、B【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为1,∴若与关于x轴对称,则,即,当三点不共线时,当三点共线时,所以同理(当且仅当时取得等号)所以当三点共线时,当三点不共线时,所以∴的最小值为圆与圆的圆心距减去两个圆的半径和,∴.故选:B.10、B【解析】直接利用空间向量垂直的坐标运算即可解决.【详解】∵∴∴,解得,故选:B.11、D【解析】先求出平面ABC的法向量,然后将高看作为向量在平面ABC的法向量上的投影的绝对值,则答案可求.【详解】设平面ABC的法向量为,而,,则,即有,不妨令,则,故,设三棱柱的高为h,则,故选:D.12、A【解析】先根据前三项的系数成等差数列求,再根据古典概型概率公式求结果【详解】因为前三项的系数为,,,当时,为有理项,从而概率为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由得为矩形,则,故,结合正弦函数即可求得范围【详解】由已知可得,且四边形为矩形所以,又因为,所以得离心率因为,所以,可得,从而故答案为:14、【解析】根据条件概率公式求解即可.【详解】设事件A:猫的寿命超过10岁,事件B:猫的寿命超过12岁.依题意有,,则一只寿命超过10岁猫的寿命超过12岁的概率.故答案为:15、132【解析】根据程序框图模拟程序运行,确定变量值的变化可得结论【详解】程序运行时,变量值变化如下:,判断循环条件,满足,,;判断循环条件,满足,,;判断循环条件,不满足,输出故答案为:13216、①.-24②.【解析】由抛物线的方程及数量积的运算可求出,设直线AB的方程为,联立抛物线方程,由根与系数的关系可求出,由圆的定义求出圆心即可.【详解】由,即解得或(舍去).设直线AB的方程为.由,消去x并整理得,.又,,直线AB恒过定点N(6,0),OM垂直AB于点M,点M在以ON为直径圆上.|MQ|为定值,点Q为该圆的圆心,又即Q(3,0).故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)时,最大值为m3.【解析】(1)连接,在中,由,利用勾股定理可得,设圆柱底面半径为,求出.利用(其中即可得出;(2)利用导数,求出V的单调性,即可得出结论【小问1详解】连接,在中,,,设圆柱底面半径为,则,即,,其中【小问2详解】由及,得,列表如下:,0↗极大值↘∴当时,有极大值,也是最大值为m318、(1)4x﹣y+2=0(2)答案见解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的导数,可得切线的斜率和切点坐标,由直线的点斜式方程可得所求切线的方程;(2)求得f(x)的导数,分a、0<a两种情况讨论求出答案即可;(3)由题意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成关于的函数,结合其单调性和极值可得答案【小问1详解】函数f(x)的定义域为(0,+∞),当a=2时,,导数为4,可得f(x)在x=1处的切线的斜率为4,又f(1)=6,所以f(x)在x=1处的切线的方程为y﹣6=4(x﹣1),即4x﹣y+2=0;【小问2详解】f(x)的导数为f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①当010,即a时,当0<x时,f′(x)<0,f(x)递减;当x<10时,f′(x)>0,f(x)递增所以f(x)在(0,)上递减,在(,10)上递增,f(x)在x处取得极小值,无极大值;②当10即0<a时,f′(x)<0,f(x)在(0,10)上递减,无极值综上可得,当a时,f(x)在(0,)单调递减,在(,10)上单调递增,f(x)在x时取得极小值,无极大值当0<a时,f(x)在区间(0,10)上递减,无极值;【小问3详解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等价为存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因为a>0,可得当0<x时,g′(x)<0,g(x)递减;当x时,g′(x)>0,g(x)递增,所以当x时,g(x)取得极小值,且为最小值,由题意可得,令,,令h′(x)=0,可得x=2,当x∈(0,2)时,h′(x)>0,h(x)递增;当x∈(2,+∞)时,h′(x)<0,h(x)递减所以当x=2时,h(x)取得极大值,且为最大值h(2)=0所以满足的实数a的取值范围是(0,2)∪(2,+∞)19、(1)单调递增区间是和,单调递减是;(2)函数的最大值是,函数的最小值是.【解析】(1)利用导数和函数单调性关系,求函数的单调区间;(2)利用函数的单调性,列表求函数的最值.【小问1详解】,当,解得:或,所以函数的单调递增区间是和,当,解得:,所以函数的单调递减区间是,所以函数的单调递增区间是和,单调递减是;【小问2详解】由(1)可得下表4单调递增单调递减单调递增所以函数的最大值是,函数的最小值是20、(1);(2).【解析】解不等式求得为真、为真分别对应的解集;(1)由为真可得全真,两解集取交集可得结果;(2)由和的真假性可得一真一假,则分为真假和假真两种情况求得解集.【小问1详解】若为真,则,即,即,所以或,若为真,则,所以,因为为真命题,所以均为真命题.所以实数的取值范围是.【小问2详解】若为假命题,为真命题,则一真一假,若真假,则,解得或,若假真,则,解得,综上所述,实数的取值范围是.21、(1)(2)90(3)平均值69.5;中位数69.4【解析】(1)由各矩形面积和为1列式即可;(2)由高分频率乘以600
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗团队核心能力建设与发展策略
- 企业健康管理与大数据应用策略
- 医界视角下的隐私保护与医疗AI发展关系分析
- 区块链技术助力提升教育公平与安全
- 2025年公路交通安全生产管理模拟考试题库试卷及答案
- 从产业链到价值网解析区块链如何改变商业模式
- 创新医疗健康服务的商业模式与市场拓展
- 区块链在电子签名和身份验证中的应用
- 医疗大数据与AI技术优化治疗方案的新思路
- 低温奶销售合同范例
- 山东省烟台市、德州市、东营市三市东营2025年高考适应性考试烟台德州东营二模英语试卷+答案
- 《危险化学品企业安全生产标准化规范》专业深度解读与应用培训指导材料之7:5管理要求-5.7 操作安全(雷泽佳编制-2025A0)
- 发行碳中和债券对股价的影响分析:市场反应与策略考量
- 《汉字书写笔顺》课件
- 生命的起源小学生课件
- 高中英语外研版 单词表 必修3
- DL∕T 2447-2021 水电站防水淹厂房安全检查技术规程
- 2025年日历日程表含农历可打印
- 微训练 一文多考 备考高效(文学类文本散文《水银花开的夜晚》多角度命题)练习版
- 液压系统课件(完整)课件
- (完整版)河南08定额问题汇总
评论
0/150
提交评论