




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省实验中学顺德学校2023-2024学年数学高二上期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B.C. D.2.若且,则下列不等式中一定成立的是()A. B.C. D.3.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.4.在等比数列中,,,则等于()A. B.5C. D.95.抛掷两枚硬币,若记出现“两个正面”“两个反面”“一正一反”的概率分别为,,,则下列判断中错误的是().A. B.C. D.6.函数,的最小值为()A.2 B.3C. D.7.在棱长为4的正方体中,为的中点,点P在正方体各棱及表面上运动且满足,则点P轨迹围成的图形的面积为()A. B.C. D.8.等比数列的前项和为,若,则()A. B.8C.1或 D.或9.某综合实践小组设计了一个“双曲线型花瓶”.他们的设计思路是将某双曲线的一部分(图1中A,C之间的曲线)绕其虚轴所在直线l旋转一周,得到花瓶的侧面,花瓶底部是平整的圆面,如图2.该小组给出了图1中的相关数据:,,,,,其中B是双曲线的一个顶点.小组中甲、乙、丙、丁四位同学分别用不同的方法估算了该花瓶的容积(忽略瓶壁和底部的厚度),结果如下表所示学生甲乙丙丁估算结果()其中估算结果最接近花瓶的容积的同学是()(参考公式:,,)A.甲 B.乙C.丙 D.丁10.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.11.复数的共轭复数是A. B.C. D.12.若实数满足约束条件,则最小值为()A.-2 B.-1C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.设椭圆标准方程为,则该椭圆的离心率为______14.数列的前项和为,则的通项公式为________.15.已知向量,,不共线,点在平面内,若存在实数,,,使得,那么的值为________.16.若椭圆:的长轴长为4,焦距为2,则椭圆的标准方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在2021年“双11”网上购物节期间,某电商平台销售了一款新手机,现在该电商为调查这款手机使用后的“满意度”,从购买了该款手机的顾客中抽取1000人,每人在规定区间内给出一个“满意度”分数,评分在60分以下的视为“不满意”,在60分到80分之间(含60分但不含80分)的视为“基本满意”,在80分及以上的视为“非常满意”.现将他们的评分按,,,,分成5组,得到如图所示的频率分布直方图.(1)求这1000人中对该款手机“非常满意”的人数和“满意度”评分的中位数的估计值.(2)若按“满意度”采用分层抽样的方法从这1000名被调查者中抽取20人,再从这20人中随机抽取3人,记这3人中对该款手机“非常满意”的人数为X.①写出X的分布列,并求数学期望;②若被抽取的这3人中对该款手机“非常满意”的被调查者将获得100元话费补贴,其他被调查者将获得50元话费补贴,请求出这3人将获得的话费补贴总额的期望.18.(12分)已知集合,.(1)当a=3时,求.(2)若“”是“x∈A”的充分不必要条件,求实数a的取值范围.19.(12分)已知O为坐标原点,点,设动点W到直线的距离为d,且,.(1)记动点W的轨迹为曲线C,求曲线C的方程;(2)若直线l与曲线C交于A,B两点,直线与曲线C交于,两点,直线l与的交点为P(P不在曲线C上),且,设直线l,的斜率分别为k,.求证:为定值.20.(12分)已知抛物线C:上一点与焦点F的距离为(1)求和p的值;(2)直线l:与C相交于A,B两点,求直线AM,BM的斜率之积21.(12分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率22.(10分)已知直线l:,圆C:.(1)当时,试判断直线l与圆C的位置关系,并说明理由;(2)若直线l被圆C截得的弦长恰好为,求k的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.【详解】在正方体中,,所以异面直线与所成角为,设正方体边长为,则由为棱的中点,可得,所以,则.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.2、D【解析】根据不等式的性质即可判断.【详解】对于A,若,则不等式不成立;对于B,若,则不等式不成立;对于C,若均为负值,则不等式不成立;对于D,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.3、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A4、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D5、A【解析】把抛掷两枚硬币的情况均列举出来,利用古典概型的计算公式,把,,算出来,判断四个选项的正误.【详解】两枚硬币,记为与,则抛掷两枚硬币,一共会出现的情况有四种,A正B正,A正B反,A反B正,A反B反,则,,,所以A错误,BCD正确故选:A6、B【解析】求导函数,分析单调性即可求解最小值【详解】由,得,当时,,单调递减;当时,,单调递增∴当时,取得最小值,且最小值为故选:B.7、A【解析】构造辅助线,找到点P轨迹围成的图形为长方形,从而求出面积.【详解】取的中点E,的中点F,连接BE,EF,AF,则由于为的中点,可得,所以∠CBE=∠ECN,从而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因为BEEF=E,所以CN⊥平面ABEF,所以点P轨迹围成的图形为矩形ABEF,又,所以矩形ABEF面积为.故选:A8、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.9、D【解析】根据几何体可分割为圆柱和曲边圆锥,利用圆柱和圆锥的体积公式对几何体的体积进行估计即可.【详解】可将几何体看作一个以为半径,高为的圆柱,再加上两个曲边圆锥,其中底面半径分别为,,高分别为,,,,所以花瓶的容积,故最接近的是丁同学的估算,故选:D10、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C11、B【解析】因,故其共轭复数.应选B.考点:复数的概念及运算.12、B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】求出、的值,即可求得椭圆的离心率.【详解】在椭圆中,,,则,因此,该椭圆的离心率为.故答案为:.14、【解析】讨论和两种情况,进而利用求得答案.【详解】由题意,时,,时,,则,于是,故答案为:15、1【解析】通过平面向量基本定理推导出空间向量基本定理得推论.【详解】因为点在平面内,则由平面向量基本定理得:存在,使得:即,整理得:,又,所以,,,从而.故答案为:116、【解析】由焦距可得c,长轴长得到a,再根据可得答案.【详解】因为椭圆的长轴长为4,则,焦距为2,由,得,则椭圆的标准方程为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)65分(2)①分布列答案见解析,数学期望:;②172.5元【解析】(1)由图可知中位数在第二组,则设中位数为,从而得,解方程可得答案,(2)①由题意可求得“不满意”与“基本满意”的用户应抽取17人,“非常满意”的用户应抽取3人,则X的可能取值分别为0,1,2,3,然后求出对应的概率,从而可求得其分布列和期望,②设这3人获得的话费补贴总额为Y,则,然后由①结合期望的性质可求得答案【小问1详解】这1000人中对该款手机“非常满意”的人数为.由频率分布直方图可得,得分的中位数为,则,解得,所以中位数为65分.【小问2详解】①若按“满意度”采用分层抽样的方法从这1000名被调查者中抽取20人,则“不满意”与“基本满意”的用户应抽取人,“非常满意”的用户应抽取人,X的可能取值分别为0,1,2,3,,,,,则X的分布列为X0123P故.②设这3人获得的话费补贴总额为Y,则(元),所以元,故这3人将获得的话费补贴总额的期望为172.5元.18、(1)(2)【解析】(1)解不等式求出集合、,然后根据交集的运算法则求交集;(2)解不等式求出集合、,求出,然后根据充分不必要性列出不等式组求解.【小问1详解】解:由题意得:当时,可解得集合的解集为由可解得或故.【小问2详解】的解集为又又“”是“x∈A”的充分不必要条件解得:,故实数a的取值范围19、(1)(2)证明见解析【解析】(1)设点,由即所以化简即可得到答案.(2)设,,设直线l的方程为:与(1)中W的轨迹方程联立,得出韦达定理,求出,同理设直线的方程为:,得出,再根据从而可证明结论.【小问1详解】设点,因为,所以,因为,所以所以所以所以所以C的方程为:【小问2详解】设,,设直线l的方程为:,则由得:所以,,所以所以设直线的方程为:,则同理可得因所以即,即,即解得,即所以为定值.20、(1)(2)【解析】(1)结合抛物线的定义以及点坐标求得以及.(2)求得的坐标,由此求得直线AM,BM的斜率之积.【小问1详解】依题意抛物线C:上一点与焦点F的距离为,根据抛物线的定义可知,将点坐标代入抛物线方程得.【小问2详解】由(1)得抛物线方程为,,不妨设A在B下方,所以.21、(1);(2).【解析】(1)求出同时掷两颗骰子的基本事件数、及骰子向上的点数相等的基本事件数,应用古典概型的概率求法,求概率即可.(2)列举出两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数的基本事件,应用古典概型的概率求法,求概率即可.【小问1详解】同时掷两颗骰子包括的基本事件共种,掷两颗骰子向上的点数相等包括的基本事件为6种,故所求的概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国能建葛洲坝三公司公开竞聘1人笔试题库历年考点版附带答案详解
- 2025年放射科医生影像学报告书写规范考试答案及解析
- 2025年健康管理行业健康管理平台创新发展研究报告
- 2025年自动驾驶行业自动驾驶技术与智能交通研究报告
- 2025年海洋资源行业海洋环境保护与海洋资源开发利用研究报告
- 2025年医疗健康行业健康管理平台应用研究报告
- 2025年快递物流行业智能物流解决方案研究报告
- 2026华能北京热电有限责任公司校园招聘笔试备考试题及答案解析
- 2025年肝胆胰外科常见疾病手术治疗模拟测试卷答案及解析
- 2025年甘肃省临夏州永靖县人民医院招聘临聘专业技术人员20人笔试模拟试题及答案解析
- 报废汽车回收公司车间管理制度
- 2025合肥市辅警考试试卷真题
- 2024年安徽国元农业保险股份有限公司招聘笔试真题
- 淘宝客服合同协议书模板
- 骨水泥测试试题及答案
- 中国糖尿病合并慢性肾脏病临床管理共识 课件
- 职业人群心理健康促进指南 2025
- 无人机教育培训创业计划书
- 咸阳社区面试题及答案
- 电力工程施工进度及安全保障措施
- GB/T 19973.2-2025医疗产品灭菌微生物学方法第2部分:用于灭菌过程的定义、确认和维护的无菌试验
评论
0/150
提交评论