河南省信阳市息县一中2023-2024学年数学高二上期末综合测试试题含解析_第1页
河南省信阳市息县一中2023-2024学年数学高二上期末综合测试试题含解析_第2页
河南省信阳市息县一中2023-2024学年数学高二上期末综合测试试题含解析_第3页
河南省信阳市息县一中2023-2024学年数学高二上期末综合测试试题含解析_第4页
河南省信阳市息县一中2023-2024学年数学高二上期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省信阳市息县一中2023-2024学年数学高二上期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有()A.若有最大值,则数列的公差小于0B.若,则使的最大的n为18C.若,,则中最大D.若,,则数列中的最小项是第9项2.设双曲线与椭圆:有公共焦点,.若双曲线经过点,设为双曲线与椭圆的一个交点,则的余弦值为()A. B.C. D.3.已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为()A.24 B.36C.48 D.604.已知定义在区间上的函数,,若以上两函数的图像有公共点,且在公共点处切线相同,则m的值为()A.2 B.5C.1 D.05.在中,角A,B,C所对的边分别为a,b,c,若,,的面积为10,则的值为()A. B.C. D.6.过抛物线C:的准线上任意一点作抛物线的切线,切点为,若在轴上存在定点,使得恒成立,则点的坐标为()A. B.C. D.7.已知等比数列的前项和为,若,,则()A.20 B.30C.40 D.508.直线:和圆的位置关系是()A.相离 B.相切或相交C.相交 D.相切9.若,则复数在复平面内对应的点在()A.曲线上 B.曲线上C.直线上 D.直线上10.已知是公差为3的等差数列.若,,成等比数列,则的前10项和()A.165 B.138C.60 D.3011.下列直线中,倾斜角为45°的是()A. B.C. D.12.已知函数在处取得极小值,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆和圆(c为椭圆的半焦距)有四个不同的交点,则椭圆的离心率的取值范围是_____.14.已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,为两曲线的一个公共点,且(为坐标原点).若,则的取值范围是______15.数列的前项和为,则的通项公式为________.16.双曲线的左顶点为,虚轴的一个端点为,右焦点到直线的距离为,则双曲线的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直四棱柱中,(1)求二面角的余弦值;(2)若点P为棱的中点,点Q在棱上,且直线与平面所成角的正弦值为,求的长18.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的存在,求实数的取值范围;若问题中的不存在,请说明理由设等差数列的前n项和为,数列的前n项和为,___________,,,是否存在实数,对任意都有?19.(12分)已知命题:方程有实数解,命题:,.(1)若是真命题,求实数的取值范围;(2)若为假命题,且为真命题,求实数的取值范围.20.(12分)已知在时有极值0.(1)求常数,的值;(2)求在区间上的最值.21.(12分)已知数列的前项和为,且(1)求数列的通项公式;(2)记,求数列的前项和22.(10分)已知抛物线上任意一点到焦点F最短距离为2,(1)求抛物线C的方程;(2)过焦点F的直线,互相垂直,且与C分别交于A,B,M,N四点,求四边形AMBN面积的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由有最大值可判断A;由,可得,,利用可判断BC;,得,,可判断D.【详解】对于选项A,∵有最大值,∴等差数列一定有负数项,∴等差数列为递减数列,故公差小于0,故选项A正确;对于选项B,∵,且,∴,,∴,,则使的最大的n为17,故选项B错误;对于选项C,∵,,∴,,故中最大,故选项C正确;对于选项D,∵,,∴,,故数列中的最小项是第9项,故选项D正确.故选:B.2、A【解析】求出双曲线方程,根据椭圆和双曲线的第一定义求出的长度,从而根据余弦定理求出的余弦值【详解】由题得,双曲线中,所以,双曲线方程为:,假设在第一象限,根据椭圆和双曲线的定义可得:,解得:,,所以根据余弦定理,故选:A3、A【解析】由题意可得出与、、的值,在根据椭圆定义得的值,即可得到是直角三角形,即可求出的面积.【详解】由题意知,.根据椭圆定义可知,是直角三角形,.故选:A.4、C【解析】设两曲线与公共点为,分别求得函数的导数,根据两函数的图像有公共点,且在公共点处切线相同,列出等式,求得公共点的坐标,代入函数,即可求解.【详解】根据题意,设两曲线与公共点为,其中,由,可得,则切线的斜率为,由,可得,则切线斜率为,因为两函数的图像有公共点,且在公共点处切线相同,所以,解得或(舍去),又由,即公共点的坐标为,将点代入,可得.故选:C.5、A【解析】由同角公式求出,根据三角形面积公式求出,根据余弦定理求出,根据正弦定理求出.【详解】因为,所以,因为,的面积为10,所以,故,从而,解得,由正弦定理得:.故选:A.【点睛】本题考查了同角公式,考查了三角形的面积公式,考查了余弦定理,考查了正弦定理,属于基础题.6、D【解析】设切点,点,联立直线的方程和抛物线C的准线方程可得,将问题转化为对任意点恒成立,可得,解出,从而求出答案【详解】设切点,点由题意,抛物线C的准线,且由,得,则直线的方程为,即,联立令,得由题意知,对任意点恒成立,也就是对任意点恒成立因为,,则,即对任意实数恒成立,所以,即,所以,故选:D【点睛】一般表示抛物线的切线方程时可将抛物线方程转化为函数解析式,可利用导数的几何意义求解切线斜率,再代入计算.7、B【解析】根据等比数列前项和的性质进行求解即可.【详解】因为是等比数列,所以成等比数列,即成等比数列,显然,故选:B8、C【解析】直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上,直线的斜率存在,故可知直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系【详解】圆C:x2+y2﹣2y=0可化为x2+(y﹣1)2=1∴圆心为(0,1),半径为1∵直线l:y﹣1=k(x﹣1)恒过点(1,1),且点(1,1)在圆上且直线的斜率存在∴直线l:y﹣1=k(x﹣1)和圆C:x2+y2﹣2y=0的关系是相交,故选C【点睛】本题考查的重点是直线与圆的位置关系,解题的关键是确定直线恒过定点,此题易误选B,忽视直线的斜率存在9、B【解析】根据复数的除法运算,先化简,进而求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,因此复数在复平面内对应的点为,可知其在曲线上.故选:B10、A【解析】由等差数列的定义与等比数列的性质求得首项,然后由等差数列的前项和公式计算【详解】因为,,成等比数列,所以,所以,解得,所以故选:A11、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C12、A【解析】由导数与极值与最值的关系,列式求实数的值.【详解】由条件可知,,,解得:,,检验,时,当,得或,函数的单调递增区间是和,当,得,所以函数的单调递减区间是,所以当时,函数取得极小值,满足条件.所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当圆的直径介于椭圆长轴和短轴长度范围之间时,椭圆和圆有四个不同的焦点,由此列不等式,解不等式求得椭圆离心率的取值范围.【详解】由于椭圆和圆有四个焦点,故圆的直径介于椭圆长轴和短轴长度范围之间,即.由得,两边平方并化简得,即①.由得,两边平方并化简得,解得②.由①②得.故填.【点睛】本小题主要考查椭圆和圆的位置关系,考查椭圆离心率取值范围的求法,属于中档题.14、【解析】设出半焦距c,用表示出椭圆的长半轴长、双曲线的实半轴长,由可得为直角三角形,由此建立关系即可计算作答,【详解】设椭圆的长半轴长为,双曲线的实半轴长为,它们的半焦距为c,于是得,,由椭圆及双曲线的对称性知,不妨令焦点和在x轴上,点P在y轴右侧,由椭圆及双曲线定义得:,解得,,因,即,而O是线段的中点,因此有,则有,即,整理得:,从而有,即有,又,则有,即,解得,所以的取值范围是.故答案为:【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得值,根据离心率的定义求解离心率;②齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.15、【解析】讨论和两种情况,进而利用求得答案.【详解】由题意,时,,时,,则,于是,故答案为:16、【解析】根据双曲线左顶点和虚轴端点的定义,结合点到直线距离公式、双曲线的离心率公式进行求解即可.【详解】不妨设在纵轴的正半轴上,由双曲线的标准方程可知:,右焦点的坐标为,直线的方程为:,因为右焦点到直线的距离为,所以有,即双曲线的离心率为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)推导出,以A为原点,分别以,,所在的直线为轴,轴,轴,建立如图所示的空间直角坐标系,利用空间向量求二面角的余弦值;(2)设,则,求出平面的法向量,利用空间向量求出的长【详解】解(1)在直四棱柱中,因为平面,平面,平面,所以因为,所以以A为原点,分别以,,所在的直线为轴,轴,轴,建立如图所示的空间直角坐标系,因为,所以,所以,设平面的一个法向量为,则,令,则,因为平面,所以平面的一个法向量为,设二面角的平面角为,由图可知为锐角,所以二面角的余弦值为(2)设,则,因为点为的中点,所以,则,设平面一个法向量为,则,令,则,设直线与平面所成角的大小为,因为直线与平面所成角的正弦值为,所以,解得或(舍去)所以【点睛】关键点点睛:此题考查二面角的求法,考查线段长的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算能力,解题的关键是根据是建立空间直角坐标系,利用空间向量求解,属于中档题18、答案见解析【解析】由已知条件可得,假设时,取最小值,则,若补充条件是①,则可求得,代入化简可求出的取值范围,从而可求得答案,若补充条件是②,则可得,该数列是递减数列,所以不存在k,使得取最小值,若补充条件是③,则可得,代入化简可求出的取值范围,从而可求得答案,【详解】解:等差数列的公差为d,当时,,得,从而,当时,得,所以数列是首项为,公比为的等比数列,所以,由对任意,都有,当等差数列的前n项和存在最小值时,假设时,取最小值,所以;若补充条件是①,因为,,从而,由得,所以,由等差数列的前n项和存在最小值,则,得,又,所以.所以,故实数的取值范围为若补充条件是②,由,即,又,所以.所以,由于该数列是递减数列,所以不存在k,使得取最小值,故实数不存在以下为严格的证明:由等差数列的前n项和存在最小值,则,得,所以,所以不存在k,使得取最小值,故实数不存在若补充条件是③,由,得,又,所以,所以由等差数列的前n项和存在最小值,则,得,又,所以.所以存在,使得取最小值,所以,故实数的取值范围为19、(1)或;(2)【解析】(1)由方程有实数根则,可求出实数的取值范围.(2)为真命题,即从而得出的取值范围,由(1)可得出为假命题时实数的取值范围.即可得出答案.【详解】解:(1)方程有实数解得,,解之得或;(2)为假命题,则,为真命题时,,,则故.故为假命题且为真命题时,.【点睛】本题考查命题为真时求参数的范围和两个命题同时满足条件时,求参数的范围,属于基础题.20、(1),;(2)最小值为0,最大值为4.【解析】(1)对求导,根据在时有极值0,得到,再求出,的值;(2)由(1)知,,然后判断的单调性,再求出的值域【详解】解:(1),由题知:联立(1)、(2)有(舍)或.当时在定义域上单调递增,故舍去;所以,,经检验,符合题意(2)当,时,故方程有根或由,得或由得,函数的单调增区间为:,,减区间为:.函数在取得极大值,在取极小值;经计算,,,,所以最小值为0,最大值为4.21、(1)(2)【解析】(1)结合作差法可直接求解;(2)由错位相减法可直接求解.【小问1详解】当时,;当时,,当时,满足上式,所以;【小问2详解】由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论