




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省虎林市2023年数学高二上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000 B.6000C.7000 D.80002.一盒子里有黑色、红色、绿色的球各一个,现从中选出一个球.事件选出的球是红色,事件选出的球是绿色.则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件3.如图,已知正方体,点P是棱中点,设直线为a,直线为b.对于下列两个命题:①过点P有且只有一条直线l与a、b都相交;②过点P有且只有两条直线l与a、b都成角.以下判断正确的是()A.①为真命题,②为真命题 B.①为真命题,②为假命题C.①为假命题,②为真命题 D.①为假命题,②为假命题4.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=05.已知椭圆的长轴长是短轴长的倍,左焦点、右顶点和下顶点分别为,坐标原点到直线的距离为,则的面积为()A. B.4C. D.6.“冰雹猜想”数列满足:,,若,则()A.4 B.3C.2 D.17.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π.A.0 B.1C.2 D.38.若双曲线的渐近线方程为,则实数a的值为()A B.C.2 D.9.若,,,则a,b,c与1的大小关系是()A. B.C. D.10.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.11.曲线与曲线的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等12.已知两圆相交于两点和,两圆的圆心都在直线上,则的值为A. B.2C.3 D.0二、填空题:本题共4小题,每小题5分,共20分。13.若函数的递增区间是,则实数______.14.已知曲线在处的切线方程为,则________15.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______16.若数列的前n项和,则其通项公式________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,是边长为2的等边三角形,,O是BC的中点,(1)证明:平面平面BCD;(2)若三棱锥的体积为,E是棱AC上的一点,当时,二面角E-BD-C大小为60°,求t的值18.(12分)已知点在抛物线()上,过点A且斜率为1直线与抛物线的另一个交点为B(1)求p的值和抛物线的焦点坐标;(2)求弦长19.(12分)已知函数的导函数为,且满足(1)求及的值;(2)求在点处的切线方程20.(12分)已知函数.(1)求的单调区间;(2)求在区间上的最值.21.(12分)如图,在直三棱柱ABC-A1B1C1中,底面ABC是等边三角形,D是AC的中点.(1)证明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.22.(10分)某厂A车间为了确定合理的工时定额,需要确定加工零件所花费的时间,为此作了五次试验,得到数据如下:加工零件的个数x12345加工的时间y(小时)1.52.43.23.94.5(1)在给定的坐标系中画出散点图;(2)求出y关于x的回归方程;(3)试预测加工9个零件需要多少时间?参考公式:,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先由频率分布直方图得到抽取的样本中底部周长小于110㎝的概率,进而可求出结果.【详解】由频率分布直方图可得,样本中底部周长小于110㎝的概率为,因此在这片树木中,底部周长小于110㎝的株树大约是.故选:C.【点睛】本题主要考查频率分布直方图的应用,属于基础题型.2、A【解析】根据事件的关系进行判断即可.【详解】由题意可知,事件与为互斥事件,但事件不是必然事件,所以,事件与事件是互斥事件,不是对立事件.故选:A.【点睛】本题考查事件关系的判断,考查互斥事件和对立事件概率的理解,属于基础题.3、A【解析】①由正方形的性质,可以延伸正方形,再利用两条平行线确定一个平面即可;②一组邻边与对角面夹角相等,在平面内绕P转动,可以得到二条直线与a、b的夹角都等于.【详解】如下图所示,在侧面正方形和再延伸一个正方形和,则平面和在同一个平面内,所以过点P,有且只有一条直线l,即与a、b相交,故①为真命题;取中点N,连PN,由于a、b为异面直线,a、b的夹角等于与b的夹角.由于平面,平面,,所以平面,所以与与b的夹角都为.又因为平面,所以与与b的夹角都为,而,所以过点P,在平面内存在一条直线,使得与与b的夹角都为,同理可得,过点P,在平面内存在一条直线,使得与与的夹角都为;故②为真命题.故选:A4、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为5、C【解析】设,根据题意,可知的方程为直线,根据原点到直线的距离建立方程,求出,进而求出,的值,以及到直线的距离,再根据面积公式,即可求出结果.【详解】设,由题意可知,其中,所以的方程为,即所以原点到直线的距离为,所以,即,;所以直线的方程为,所以到直线的距离为;又,所以的面积为.故选:C.6、A【解析】根据题意分别假设为奇数、偶数的情况,求出对应的即可.【详解】由题意知,因为,若为奇数时,,与为奇数矛盾,不符合题意;若为偶数时,,可得,符合题意.不符合故选:A7、C【解析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.8、D【解析】由双曲线的渐近线方程结合已知可得.【详解】双曲线方程为所以渐近线为,故,解得:.故选:D9、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.10、C【解析】作出辅助线,找到异面直线与所成角,进而利用余弦定理及勾股定理求出各边长,最后利用余弦定理求出余弦值.【详解】如图所示,把三棱柱补成四棱柱,异面直线与所成角为,由勾股定理得:,,∴故选:C11、D【解析】分别求出两曲线表示的椭圆的位置,长轴长、短轴长、离心率和焦距,比较可得答案.【详解】曲线表示焦点在x轴上的椭圆,长轴长为10,短轴长为6,离心率为,焦距为8,曲线焦点在x轴上的椭圆,长轴长为,短轴长为,离心率为,焦距为,故选:D12、C【解析】根据条件知:两圆的圆心的所在的直线与两圆的交点所在的直线垂直,以及两圆的交点的中点在两圆的圆心的所在的直线上,由此得到方程,得解.【详解】由已知两圆的交点与两圆的圆心的所在的直线垂直,,所以,又因为两圆的交点的中点在两圆的圆心所在的直线上,所以,解得:,所以,故选.【点睛】此题主要考查圆与圆的位置关系,解答此题的关键是需知两圆的圆心所在的直线与两圆的交点所在的直线垂直,并且两圆的交点的中点在两圆的圆心所在的直线上,此题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.14、1【解析】先求导,由,代入即得解【详解】由题意,故答案为:115、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:16、【解析】由和计算【详解】由题意,时,,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)3【解析】(1)证得平面BCD,结合面面垂直判定定理即可得出结论;(2)建立空间直角坐标系,利用空间向量求二面角的公式可得,进而解方程即可求出结果.【小问1详解】因为,O是BC的中点,所以,又因为,且,平面BCD,平面BCD,所以平面BCD,因为平面ABC,所以平面平面BCD【小问2详解】连接OD,又因为是边长为2的等边三角形,所以,由(1)知平面BCD,所以AO,BC,DO两两互相垂直以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴建立如图所示空间直角坐标系设,则O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因为A-BCD的体积为,所以,解得,即A(0,0,3),,∵,∴,设平面BCD的法向量为,,则,取平面BCD的法向量为,,,设是平面BDE的法向量,则,∴取平面BDE的法向量,解得或(舍)18、(1),焦点坐标(2)【解析】(1)将点的坐标代入抛物线的方程,可求得的值,进而可得抛物线的焦点坐标;(2)写出直线的方程,联立直线与抛物线方程求得交点坐标,利用两点之间的距离公式即可求解.【小问1详解】因为点在抛物线上,所以,即所以抛物线的方程为,焦点坐标为;【小问2详解】由已知得直线方程为,即由得,解得或所以,则19、(1);;(2).【解析】(1)由题可得,进而可得,然后可得,即得;(2)由题可求,,再利用点斜式即得.【小问1详解】∵,∴,,∴,,∴.【小问2详解】∵,,∴,,∴在点处的切线方程为,即.20、(1)在、上是增函数,在上是减函数;(2)在区间,上的最大值为2,最小值为【解析】(1)求导,根据导数和函数的单调性的关系即可求出单调区间;(2)根据(1)可知,函数在,、上为增函数,在上为减函数,求出端点值和极值,比较即可求出最值【小问1详解】根据题意,由于,,得到,,在、上是增函数,当时,在上是减函数;【小问2详解】由(1)可知,函数在,,上为增函数,在上为减函数,,(1),,,在区间,上的最大值为2,最小值为21、(1)证明见解析(2)【解析】(1),连接,证明,再根据线面平行的判定定理即可得证;(2)说明平面,取的中点F,连接,以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,利用向量法即可得出答案.【小问1详解】证明:记,连接,由直棱柱的性质可知四边形是矩形,则E为的中点.因为D是的中点,所以,又平面平面,所以平面;【小问2详解】因为底面是等边三角形,D是的中点,所以,由直棱柱的性质可知平面平面,平面平面,面,所以平面,取的中点F,连接,则两两垂直,故以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,设,则,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯乘客信息安全保护措施考核试卷
- 畜牧业生产性能测定与评价考核试卷
- 山东司法警官职业学院《体育课程与教学论》2023-2024学年第一学期期末试卷
- 上海财经大学浙江学院《热动专业英语A》2023-2024学年第一学期期末试卷
- 江苏省宜兴市张渚徐舍教联盟重点中学2025年初三3月月考(数学试题文)含解析
- 辽宁税务高等专科学校《食品法规与标准》2023-2024学年第二学期期末试卷
- 内蒙古呼和浩特市第六中学2025届高三一诊模拟考试英语试题含解析
- 天津工艺美术职业学院《生物学综合(二)》2023-2024学年第二学期期末试卷
- 牡丹江大学《建筑给水排水工程课程设计》2023-2024学年第二学期期末试卷
- 吉林省延边市长白山第一高级中学2025届高三第二学期第2次月考综合试题含解析
- 2023年版-肿瘤内科临床路径
- 婚育情况登记表
- word精美小升初简历欧式模板
- 复旦大学附属眼耳鼻喉医院耳鼻喉进修汇报
- 岩芯鉴定手册
- DB32-T 3916-2020建筑地基基础检测规程-(高清现行)
- 快速排序算法高校试讲PPT
- 甘肃历史与甘肃文化
- 2022年执业医师证件租赁协议书
- 太上三官宝经(共12页)
- 高边坡施工危险源辨识及分析
评论
0/150
提交评论