湖北省汉川市第二中学2023年高二数学第一学期期末联考模拟试题含解析_第1页
湖北省汉川市第二中学2023年高二数学第一学期期末联考模拟试题含解析_第2页
湖北省汉川市第二中学2023年高二数学第一学期期末联考模拟试题含解析_第3页
湖北省汉川市第二中学2023年高二数学第一学期期末联考模拟试题含解析_第4页
湖北省汉川市第二中学2023年高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省汉川市第二中学2023年高二数学第一学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或2.在数列中,,则()A.2 B.C. D.3.下列通项公式中,对应数列是递增数列的是()A B.C. D.4.求点关于x轴的对称点的坐标为()A. B.C. D.5.设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为A. B.C. D.6.过点与直线平行的直线的方程是()A. B.C. D.7.在空间中,“直线与没有公共点”是“直线与异面”的()A.必要不充分条件 B.充要条件C.充分不必要条件 D.既不充分也不必要条件8.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.9.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元10.已知函数,则()A.3 B.C. D.11.在三棱锥中,平面,,,,Q是边上的一动点,且直线与平面所成角的最大值为,则三棱锥的外接球的表面积为()A. B.C. D.12.直线在轴上的截距为,在轴上的截距为,则有()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.设,若,则S=________.14.已知为平面的一个法向量,为直线的方向向量.若,则__________.15.已知双曲线:的右焦点为,过点向双曲线的一条渐近线引垂线,垂足为,交另一条渐近线于,若,则双曲线的渐近线方程为__________16.与直线平行,且距离为的直线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知椭圆:经过点,离心率(1)求椭圆的标准方程;(2)设是经过右焦点的任一弦(不经过点),直线与直线:相交于点,记,,的斜率分别为,,,求证:,,成等差数列18.(12分)根据下列条件求圆的方程:(1)圆心在点O(0,0),半径r=3(2)圆心在点O(0,0),且经过点M(3,4)19.(12分)在①直线l:是抛物线C的准线;②F是椭圆的一个焦点;③,对于C上的点A,的最小值为;在以上三个条件中任选一个,填到下面问题中的横线处,并完成解答.已知抛物线C:的焦点为F,满足_____(1)求抛物线C的标准方程;(2)是抛物线C上在第一象限内的一点,直线:与C交于M,N两点,若的面积为,求m的值20.(12分)已知集合,设(1)若p是q的充分不必要条件,求实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求实数a的取值范围21.(12分)已知数列的各项均为正数,,为自然对数的底数(1)求函数的单调区间,并比较与的大小;(2)计算,,,由此推测计算的公式,并给出证明;22.(10分)在等差数列中.,(1)求的通项公式:(2)记的前项和为,求满足的的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由光的反射原理知,反射光线的反向延长线必过点,设反射光线所在直线的斜率为,则反射光线所在直线方程为:,即:.又因为光线与圆相切,所以,,整理:,解得:,或,故选D考点:1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.2、D【解析】根据递推关系,代入数据,逐步计算,即可得答案.【详解】由题意得,令,可得,令,可得,令,可得,令,可得.故选:D3、C【解析】根据数列单调性的定义逐项判断即可.【详解】对于A,B选项对应数列是递减数列.对于C选项,,故数列是递增数列.对于D选项,由于.所以数列不是递增数列故选:C.4、D【解析】根据点关于坐标轴的对称点特征,直接写出即可.【详解】A点关于x轴对称点,横坐标不变,纵坐标与竖坐标为原坐标的相反数,故点的坐标为,故选:D5、C【解析】如下图所示,是底角为的等腰三角形,则有所以,所以又因为,所以,,所以所以答案选C.考点:椭圆的简单几何性质.6、A【解析】根据题意利用点斜式写出直线方程即可.【详解】解:过点的直线与直线平行,,即.故选:A.7、A【解析】由于在空间中,若直线与没有公共点,则直线与平行或异面,再根据充分、必要条件的概念判断,即可得到结果.【详解】在空间中,若直线与没有公共点,则直线与平行或异面.故“直线与没有公共点”是“直线与异面”的必要不充分条件.故选:A.8、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.9、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D10、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B11、C【解析】由平面,直线与平面所成角的最大时,最小,也即最小,,由此可求得,从而得,得长,然后取外心,作,取H为的中点,使得,则易得,求出的长即为外接球半径,从而可得面积【详解】三棱锥中,平面,直线与平面所成角为,如图所示;则,且的最大值是,,的最小值是,即A到的距离为,,,在中可得,又,,可得;取的外接圆圆心为,作,取H为的中点,使得,则易得,由,解得,,,,由勾股定理得,所以三棱锥的外接球的表面积是.【点睛】本题考查求球的表面积,解题关键是确定球的球心,三棱锥的外接球心在过各面外心且与此面垂直的直线上12、B【解析】将直线方程的一般形式化为截距式,由此可得其在x轴和y轴上的截距.【详解】直线方程化成截距式为,所以,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、1007【解析】可证f(x)+f(1﹣x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案【详解】解:∵函数f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案为:1007点睛】本题考查倒序相加法求和,推断出f(x)+f(1﹣x)=1是解题的关键.14、##【解析】根据线面平行列方程,化简求得的值.【详解】由于,所以.故答案为:15、【解析】由题意得双曲线的右焦点F(c,0),设一渐近线OM的方程为,则另一渐近线ON的方程为.设,∵,∴,∴,解得∴点M的坐标为,又,∴,整理得,∴双曲线的渐近线方程为答案:点睛:(1)已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程就是双曲线的两条渐近线方程(2)求双曲线的渐进线方程的关键是求出的关系,并根据焦点的位置确定出渐近线的形式,并进一步得到其方程16、或【解析】由题意,设所求直线方程为,根据两平行直线间的距离公式即可求解.【详解】解:由题意,设所求直线方程为,因为直线与直线的距离为,所以,解得或,所以所求直线方程为或,故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】(1)由点在椭圆上得到,再由,得到,联立方程组,求得的值,即可得到椭圆的标准方程;(2)由(1)得椭圆右焦点坐标,设直线的方程为,联立方程组,求得,及,结合斜率公式得到,结合,求得,即可得到,,成等差数列【详解】(1)由题意,点在椭圆上得,可得①又由,所以②由①②联立且,可得,,,故椭圆的标准方程为(2)由(1)知,椭圆的方程为,可得椭圆右焦点坐标,显然直线斜率存在,设的斜率为,则直线的方程为,联立方程组,整理得,设,,则有,,由直线的方程为,令,可得,即,从而,,,又因为共线,则有,即有,所以,将,代入得,又由,所以,即,,成等差数列【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力18、(1)x2+y2=9(2)x2+y2=25【解析】(1)直接根据圆心坐标和半径,即可得到答案;(2)利用两点间的距离公式,求出圆的半径,即可得到答案;【小问1详解】根据题意,圆心在点O(0,0),半径r=3,则要求圆的方程为x2+y2=9;【小问2详解】圆心在点O(0,0),且经过点M(3,4),要求圆的半径r==5,则要求圆的方程为x2+y2=25;19、(1)(2)或.【解析】(1)选条件①,由准线方程得参数,从而得抛物线方程;选条件②,由椭圆的焦点坐标与抛物线焦点坐标相同求得得抛物线方程;选条件③,由F,A,B三点共线时,,再由两点间距离公式求得得抛物线方程;(2)求出点坐标,由点到直线距离公式求得到直线的距离,设,,直线方程代入抛物线方程,判别式大于0保证相交,由韦达定理得,由弦长公式得弦长,再计算出三角形的面积后可解得【小问1详解】选条件①:由准线方程为知,所以抛物线C的方程为选条件②:因为抛物线的焦点坐标为所以由已知得椭圆的一个焦点为.所以,又,所以,所以抛物线C的方程为选条件③:由题意可知得,当F,A,B三点共线时,,由两点间距离公式,解得,所以抛物线C的方程为.【小问2详解】把代入方程,可得,设,,联立,消去y可得,由,解得,又知,,所以,由到直线的距离为,所以,即,解得或经检验均满足,所以m的值为或.20、(1)(2)【解析】(1)先解出集合A、B,然后根据p是q的充分不必要条件列出不等式组求解.(2)¬q是¬p的必要不充分条件可知q是p的充分不必要条件,然后求解.【小问1详解】解:由题意得:,p是q的充分不必要条件,所以集合A是集合B的真子集∴,即,所以实数a的取值范围.【小问2详解】¬q是¬p的必要不充分条件p是q的必要不充分条件,即q是p的充分不必要条件集合B是集合A的真子集∴,故实数a的取值范围为21、(1)的单调递增区间为,单调递减区间为;(2)详见解析【解析】(1)求出的定义域,利用导数求其最大值,得到,取即可得出答案.(2)由,变形求得,,,由此推测:然后用数学归纳法证明即可.【小问1详解】的定义域为,当,即时,单调递增;当,即时,单调递减故的单调递增区间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论