湖南省常德市芷兰实验学校2023年数学高二上期末调研模拟试题含解析_第1页
湖南省常德市芷兰实验学校2023年数学高二上期末调研模拟试题含解析_第2页
湖南省常德市芷兰实验学校2023年数学高二上期末调研模拟试题含解析_第3页
湖南省常德市芷兰实验学校2023年数学高二上期末调研模拟试题含解析_第4页
湖南省常德市芷兰实验学校2023年数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省常德市芷兰实验学校2023年数学高二上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为虚数单位,复数是纯虚数,则()A B.4C.3 D.22.已知实数满足方程,则的最大值为()A.3 B.2C. D.3.在棱长为1的正方体中,点,分别是,的中点,点是棱上的点且满足,则两异面直线,所成角的余弦值是()A. B.C. D.4.已知随机变量,,则的值为()A.0.24 B.0.26C.0.68 D.0.765.在等比数列中,,则等于()A. B.C. D.6.若,满足约束条件则的最大值是A.-8 B.-3C.0 D.17.不等式的解集为()A. B.C.或 D.或8.如图,某圆锥的轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A. B.C. D.9.圆与圆的位置关系是()A.外离 B.外切C.相交 D.内切10.等差数列的前项和为,若,,则()A.12 B.18C.21 D.2711.已知p:,q:,那么p是q的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件12.已知等比数列满足,,则数列前6项的和()A.510 B.126C.256 D.512二、填空题:本题共4小题,每小题5分,共20分。13.已知拋物线的焦点F为,过点F的直线交该抛物线的准线于点A,与该抛物线的一个交点为B,且,则______14.函数在处的切线方程是_________15.已知,是双曲线的两个焦点,以线段为边作正,若边的中点在双曲线上,则双曲线的离心率____________.16.若等比数列满足,则的前n项和____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆内有一点,过点作直线交圆于、两点(1)当经过圆心时,求直线的方程;(2)当弦的长为时,求直线的方程18.(12分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.19.(12分)已知是公差不为0的等差数列,,且成等比数列(1)求数列通项公式;(2)设,求数列的前项和20.(12分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围21.(12分)(1)已知:函数有零点;:所有的非负整数都是自然数.若为假,求实数的取值范围;(2)已知:;:.若是的必要不充分条件,求实数的取值范围.22.(10分)已知数列的前n项和(1)求的通项公式;(2)若数列的前n项和,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由为纯虚数,∴,解得:,则,故选:C2、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.3、A【解析】建立空间直角坐标系,写出点、、、和向量的、坐标,运用求异面直线余弦值的公式即可求出.【详解】解:以为原点,分别以,,所在直线为,,轴建立如图所示的空间直角坐标第,则,,,,故,,,故两异面直线,所成角的余弦值是.故选:A.【点睛】本题考查求异面直线所成角的余弦值,属于中档题.4、A【解析】根据给定条件利用正态分布的对称性计算作答.【详解】因随机变,,有P(ξ<4)=P(ξ≤4)=0.76,由正态分布的对称性得:,所以的值为0.24.故选:A5、C【解析】根据,然后与,可得,最后简单计算,可得结果.【详解】在等比数列中,由所以,又,所以所以故选:C【点睛】本题考查等比数列的性质,重在计算,当,在等差数列中有,在等比数列中,灵活应用,属基础题.6、C【解析】作出可行域,把变形为,平移直线过点时,最大.【详解】作出可行域如图:由得:,作出直线,平移直线过点时,.故选C.【点睛】本题主要考查了简单线性规划问题,属于中档题.7、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A8、C【解析】建立空间直角坐标系,分别得到,然后根据空间向量夹角公式计算即可.【详解】以过点且垂直于平面的直线为轴,直线,分别为轴,轴,建立如图所示的空间直角坐标系.不妨设,则根据题意可得,,,,所以,,设异面直线与所成角为,则.故选:C.9、C【解析】利用圆心距与半径的关系确定正确选项.【详解】圆的圆心为,半径为,圆的圆心为,半径为,圆心距为,,所以两圆相交.故选:C10、B【解析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.11、C【解析】若p成立则q成立且若q成立不能得到p一定成立,p是q充分不必要条件.【详解】因为>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要条件.故选:C.12、B【解析】设等比数列的公比为,由题设条件,求得,再结合等比数列的求和公式,即可求解.【详解】设等比数列的公比为,因为,,可得,解得,所以数列前6项的和.故选:B.【点睛】本题主要考查了等比数列的通项公式,以及等比数列的前项和公式的应用,其中解答中熟记等比数列的通项公式和求和公式,准确计算是解答的关键,着重考查推理与运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】作垂直于准线,垂足为,准线与轴交于点,根据已知条件,利用几何方法,结合抛物线的定义得到答案.【详解】抛物线的焦点坐标,准线方程,作垂直于准线于,准线与轴交于点,则,∴.∵,∴,由抛物线的定义得,∴.故答案为:.14、【解析】求得,利用导数的几何意义,结合直线的点斜式方程,即可求得结果.【详解】因为,则,,,故在处的切线方程是,整理得:.故答案为:.15、##【解析】根据线段为边作正,得到M在y轴上,求得M的坐标,再由,得到边的中点坐标,代入双曲线方程求解.【详解】以线段为边作正,则M在y轴上,设,则,因为,所以边的中点坐标为,因为边的中点在双曲线上,所以,因为,所以,即,解得,因为,所以,故答案为:16、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)求得圆心坐标,由点斜式求得直线点的方程.(2)分成直线斜率存在和不存在两种情况进行分类讨论,由此求得直线的方程.【详解】(1)圆心坐标为(1,0),,,整理得(2)圆的半径为3,当直线的斜率存在时,设直线的方程为,整理得,圆心到直线的距离为,解得,代入整理得当直线的斜率不存在时,直线的方程为,经检验符合题意∴直线的方程为或18、(1)证明见解析(2)【解析】(1)由结合等差数列的定义证明即可;(2)由结合错位相减法得出前项和.【小问1详解】在两边同时除以,得:,,故数列是以1为首项,1为公差的等差数列;【小问2详解】由(1)得:,,①②①②得:所以.19、(1)(2)【解析】(1)设等差数列的公差为,依题意得到方程组,解得、,即可求出数列的通项公式;(2)由(1)可得,再利用分组求和法求和即可;【小问1详解】解:设等差数列的公差为,由题意,得,解得或,因为,所以【小问2详解】解:当时,,所以20、(1)(2)【解析】(1)化简命题p,将m=3代入求出命题q,再根据或、且连接的命题真假确定p,q真假即可得解;(2)由给定条件可得p是q的必要不充分条件,再列式计算作答.【小问1详解】依题意,:,:,得:.当时,:,因为真命题,为假命题,则与一真一假,当真假时,即或,无解,当假真时,即或,解得或,综上得:或,所以实数x的取值范围是;【小问2详解】因是的充分不必要条件,则p是q的必要不充分条件,于是得,解得,所以实数m的取值范围是21、(1);(2).【解析】(1)易知为真命题,根据且命题的真假可知为假命题,结合函数零点与对应方程的根之间的关系得出,解不等式即可;(2)根据一元二次不等式的解法可得和,结合必要不充分条件的概念可得,利用集合与集合之间的关系即可得出答案.【详解】解:(1)对于:所有的非负整数都是自然数,显然正确.因为为假,所以为假.所以“函数没有零点”为真,所以,解得.所以实数的取值范围是.(2)对于:,解得或.对于,不等式的解集为,因为是的必要不充分条件,所以所以或,所以或,所以实数的取值范围是.22、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论