




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区北京八中乌兰察布分校2023年数学高二上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,内角所对的边为,若,,,则()A. B.C. D.2.在一次体检中,发现甲、乙两个单位的职工中体重超过的人员的体重如下(单位:).若规定超过为显著超重,从甲、乙两个单位中体重超过的职工中各抽取1人,则这2人中,恰好有1人显著超重的概率为()A. B.C. D.3.等差数列中,若,则()A.42 B.45C.48 D.514.已知等比数列的前项和为,则关于的方程的解的个数为()A.0 B.1C.无数个 D.0或无数个5.已知直线过点且与直线平行,则直线方程为()A. B.C. D.6.若关于x的方程有解,则实数的取值范围为()A. B.C. D.7.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.488.在数列中,,则此数列最大项的值是()A.102 B.C. D.1089.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A. B.C. D.11.已知双曲线,且三个数1,,9成等比数列,则下列结论正确的是()A.的焦距为 B.的渐近线方程为C.的离心率为 D.的虚轴长为12.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.数列中,,则______14.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________15.已知函数的图象与x轴相交于A,B两点,与y轴相交于点C,则的外接圆E的方程是________16.直线与直线间的距离为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)曲线的左、右焦点分别为,左、右顶点分别为,C上的点M满足,且直线的斜率之积等于(1)求C的方程;(2)过点的直线l交C于A,B两点,若,其中,证明:18.(12分)已知椭圆:的左、右焦点分别为,,过点的直线l交椭圆于A,两点,的中点坐标为.(1)求直线l的方程;(2)求的面积.19.(12分)已知双曲线:的两条渐近线所成的锐角为且点是上一点(1)求双曲线的标准方程;(2)若过点的直线与交于,两点,点能否为线段的中点?并说明理由20.(12分)已知命题p:实数x满足;命题q:实数x满足.若p是q的必要条件,求实数a的取值范围21.(12分)某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:间隔时间x/分101112131415等候人数y/人232526292831调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.(1)若选取的是中间4组数据,求y关于x的线性回归方程=x+,并判断此方程是否是“恰当回归方程”.(2)假设该起点站等候人数为24人,请你根据(1)中的结论预测车辆发车间隔多少时间合适?附:对于一组数据(x1,y1),(x2,y2),(xn,yn),其回归直线=x+的斜率和截距的最小二乘估计分别为22.(10分)如图所示,在三棱柱中,,点在平面ABC上的射影为线段AC的中点D,侧面是边长为2的菱形(1)若△ABC是正三角形,求异面直线与BC所成角的余弦值;(2)当直线与平面所成角的正弦值为时,求线段BD的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用正弦定理角化边得到,再利用余弦定理构造方程求得结果.【详解】,,由余弦定理得:,,.故选:B.2、B【解析】列举出所有选取的情况,再找出满足题意的情况,根据古典概型的概率计算公式即可求解.【详解】不妨用表示每种抽取情况,其中是指甲单位抽取1人的体重,代表从乙单位抽取人的体重.则所有的可能有16种,如下所示:,,,,,,,,,,,,,,,其中满足题意的有6种:,,,,,故抽取的这2人中,恰好有1人显著超重的概率为:.故选:.3、C【解析】结合等差数列的性质求得正确答案.【详解】依题意是等差数列,,.故选:C4、D【解析】利用等比数列的求和公式讨论公比的取值即得.【详解】设等比数列的公比为,当时,,因为,所以无解,即方程的解的个数为0,当时,,所以时,方程有无数个偶数解,当时,方程无解,综上,关于的方程的解的个数为0或无数个.故选:D.5、C【解析】由题意,直线的斜率为,利用点斜式即可得答案.【详解】解:因为直线与直线平行,所以直线的斜率为,又直线过点,所以直线的方程为,即,故选:C.6、C【解析】将对数方程化为指数方程,用x表示出a,利用基本不等式即可求a的范围【详解】,,当且仅当时取等号,故故选:C7、D【解析】利用等差数列的前项和公式以及等差数列的性质即可求出.【详解】因为为等差数列的前项和,所以故选:D【点睛】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.8、D【解析】将将看作一个二次函数,利用二次函数的性质求解.【详解】将看作一个二次函数,其对称轴为,开口向下,因为,所以当时,取得最大值,故选:D9、A【解析】由,结合基本不等式可得,由此可得,由此说明“”是“”的充分条件,再通过举反例说明“”不是“”的必要条件,由此确定正确选项.【详解】∵,∴(当且仅当时等号成立),(当且仅当时等号成立),∴(当且仅当时等号成立),若,则,∴,所以“”是“”的充分条件,当时,,此时,∴“”不是“”的必要条件,∴“”是“”的充分不必要条件,故选:A.10、B【解析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.11、D【解析】先求得的值,然后根据双曲线的知识对选项进行分析,从而确定正确答案.【详解】方程表示双曲线,则,成等比数列,则,所以双曲线方程为,所以,故双曲线的焦距为,A选项错误.渐近线方程为,B选项错误.离心率,C选项错误.虚轴长,D选项正确.故选:D12、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据可得,则,所以可得数列是以6为周期周期数列,再由计算出的值,再利用对数的运算性质可求得结果【详解】因为,所以,所以,所以数列是以6为周期的周期数列,因为,,所以,所以,所以所以,故答案为:114、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:15、【解析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求.【详解】令,得或,则,∴外接圆的圆心的横坐标为2,设,半径为r,由,得,则,即,得,.∴的外接圆的方程为.故答案为:.16、【解析】利用平行间的距离公式可求得结果.【详解】由平行线间的距离公式可知,直线、间的距离为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由椭圆定义可得到,再利用斜率公式及直线的斜率之积等于,列出方程,化简对比系数可得;(2)分直线l的斜率为0和不为0两种情况讨论,利用可得到T在定直线上,且该直线是的中垂线即可得到证明.【小问1详解】因为C上的点M满足,所以C表示焦点在x轴上的椭圆,且,即,,所以,设,则,①所以直线的斜率,直线的斜率,由已知得,即,②由①②得,所以C的方程为【小问2详解】当直线l的斜率为0时,A与重合,B与重合,,,成立.当直线l的斜率不为0时,设l的方程为联立方程组,消x整理得所以,解得或设,则,由,得,所以设,由,得,所以,所以,所以点T在直线上,且,所以是等腰三角形,且,所以,综上,【点睛】关键点点晴:本题第二问突破点是证明T在定直线上,且该直线是的垂直平分线,从而得到,考查学生的数学运算能力,转化化归思想.18、(1)(2)【解析】(1)设,根据AB的中点坐标可得,再利用点差法求得直线的斜率,即可求出直线方程;(2)易得直线过左焦点,联立直线和椭圆方程,消,利用韦达定理求得,再根据即可得出答案.【小问1详解】解:设,因为的中点坐标为,所以,则,两式相减得,即,即,所以直线l的斜率为1,所以直线l的方程为,即;【小问2详解】在直线中,当时,,由椭圆:,得,则直线过点,联立,消整理得,则,.19、(1);(2)点不能为线段的中点,理由见解析.【解析】(1)由渐近线夹角求得一个斜率,再代入点的坐标,然后可解得得双曲线方程;(2)设直线方程为(斜率不存在时另说明),与双曲线方程联立,消元后应用韦达定理,结合中点坐标公式求得,然后难验证直线与双曲线是否相交即可得【详解】解:(1)由题意知,双曲线的渐近线的倾斜角为30°或60°,即或当时,的标准方程为,代入,无解当时,的标准方程为,代入,解得故的标准方程为(2)不能是线段的中点设交点,,当直线的斜率不存在时,直线与双曲线只有一个交点,不符合题意.当直线的斜率存在时,设直线方程为,联立方程组,整理得,则,由得,将代入判别式,所以满足题意的直线也不存在所以点不能为线段的中点20、【解析】由题设得是为真时的子集,即,法一:讨论、,根据集合的包含关系求参数范围;法二:利用在恒成立,结合参变分离及指数函数的单调性求参数范围.【详解】由,得,则命题对应的集合为,设命题对应的集合为,是的必要条件,则,由,得,又,法一:若时,,则,显然成立;若时,,则,可得,综上:法二:在恒成立,即,∵在单调递减,∴.21、(1),是“恰当回归方程”;(2)10分钟较合适.【解析】(1)应用最小二乘法求出回归直线方程,再分别估计、时的值,结合“恰当回归方程”的定义判断是否为“恰当回归方程”.(2)根据(1)所得回归直线方程,将代入求x值即可.【小问1详解】中间4组数据是:间隔时间(分钟)11121314等候人数(人)25262928因为,所以,故,又,所以,当时,,而;当时,,而;所以所求的线性回归方程是“恰当回
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 零碳工厂绿色交通方案及设施配置
- 燃气输配网络负荷测试方案
- 船舶生产线自动化系统实施方案
- 高层建筑地下室后浇带防水层施工缺陷的检测与修复
- 南京一模数学试题及答案
- 助理药师考试题目及答案
- 施工技术质量控制方案
- 2025春季黑龙江哈尔滨“丁香人才周”尚志市事业单位引才招聘98人模拟试卷附答案详解(黄金题型)
- 园林景观场地平整设计
- 2025春季河北邯郸市教育局市直学校选聘博硕人才300人模拟试卷带答案详解
- 2025年Adobe中国认证设计师考试设计规范试题及答案
- 2025年金融科技行业全球市场发展趋势研究报告
- 管理咨询项目考核方案
- 保洁日常清洁标准课件
- 乡镇财政监管培训课件
- 1.2细胞的多样性和统一性(1)课件-高一上学期生物人教版必修1
- Unit 1~2单元月考测试(含答案) 2025-2026学年译林版(2024)八年级英语上册
- 工程预算审核服务方案(3篇)
- 2025-2026学年七年级英语上学期第一次月考 (上海专用)原卷
- 2025年电梯培训考核题目及答案
- VTE课件讲解教学课件
评论
0/150
提交评论