山西省太原市迎泽区太原五中2023年数学高二上期末考试试题含解析_第1页
山西省太原市迎泽区太原五中2023年数学高二上期末考试试题含解析_第2页
山西省太原市迎泽区太原五中2023年数学高二上期末考试试题含解析_第3页
山西省太原市迎泽区太原五中2023年数学高二上期末考试试题含解析_第4页
山西省太原市迎泽区太原五中2023年数学高二上期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市迎泽区太原五中2023年数学高二上期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.命题“若,则”的否命题为“若,则”C.若命题p:或;命题q:或,则是的必要不充分条件D.“”是“”的充分不必要条件2.已知命题p:,,则命题p的否定为()A., B.,C, D.,3.已知空间向量,,且,则的值为()A. B.C. D.4.双曲线:的实轴长为()A. B.C.4 D.25.设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6 B.C.8 D.6.在等差数列中,其前项和为.若,是方程的两个根,那么的值为()A.44 B.C.66 D.7.命题:“∃x<1,x2<1”的否定是()A.∀x≥1,x2<1 B.∃x≥1,x2≥1C.∀x<1,x2≥1 D.∃x<1,x2≥18.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A B.C. D.9.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.10.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B.C. D.11.数列满足且,则的值是()A.1 B.4C.-3 D.612.如图,在四面体中,,分别是,的中点,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的最小值为______.14.已知函数若存在,使得成立,则实数的取值范围是_______________15.据相关数据统计,部分省市的政府工作报告将“推进5G通信网络建设”列入2020年的重点工作,2020年一月份全国共建基站3万个如果从2月份起,以后的每个月比上一个月多建设0.2万个,那么2020年这一年全国共有基站________万个16.以点为圆心,且与直线相切的圆的方程是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如下图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值18.(12分)已知双曲线C:(a>0,b>0)的离心率为,且双曲线的实轴长为2(1)求双曲线C的方程;(2)已知直线x-y+m=0与双曲线C交于不同的两点A、B,且线段AB中点在圆x2+y2=17上,求m的值19.(12分)已知直线:和:(1)若,求实数m的值;(2)若,求实数m的值20.(12分)已知函数,其中为常数,且(1)求证:时,;(2)已知a,b,p,q为正实数,满足,比较与的大小关系.21.(12分)已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点,已知点的坐标为,若,求直线的方程22.(10分)如图,矩形的两个顶点位于x轴上,另两个顶点位于抛物线在x轴上方的曲线上,求矩形面积最大时的边长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据逆否命题的定义可判断A;根据否命题的定义可判断B;求出、,根据充分条件和必要条件的概念可以判断C;解出不等式,根据充分条件和必要条件的概念可判断D.【详解】命题“若,则”的逆否命题为“若,则”,故A正确;命题“若,则”的否命题为“若,则”,故B正确;若命题p:或;命题q:或,则:-1≤x≤1是:-2≤x≤1的充分不必要条件,故C错误;或x<1,故“”是“”的充分不必要条件,故D正确.故选:C.2、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.3、B【解析】根据向量垂直得,即可求出的值.【详解】.故选:B.4、A【解析】根据双曲线的几何意义即可得到结果.【详解】因为双曲线的实轴长为2a,而双曲线中,,所以其实轴长为故选:A5、B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B6、D【解析】由,是方程的两个根,利用韦达定理可知与的和,根据等差数列的性质可得与的和等于,即可求出的值,然后再利用等差数列的性质可知等于的11倍,把的值代入即可求出的值.【详解】因为,是方程的两个根,所以,而,所以,则,故选:.7、C【解析】将特称命题否定为全称命题即可【详解】根据含有量词的命题的否定,则“∃x<1,x2<1”的否定是“∀x<1,x2≥1”.故选:C.8、A【解析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A9、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.10、C【解析】抛物线焦点为,准线方程为,由得或所以,故答案为C考点:1、抛物线的定义;2、直线与抛物线的位置关系11、A【解析】根据题意,由于,可知数列是公差为-3的等差数列,则可知d=-3,由于=,故选A12、A【解析】利用向量的加法法则直接求解.【详解】在四面体中,,分别是,的中点,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由解析式知定义域为,讨论、、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.14、【解析】分离参数法得到能成立,构造函数,求出的最小值,即可求出实数a的取值范围.【详解】由得.设,则存在,使得成立,即能成立,所以能成立,所以.又令,由对勾函数的性质可得:在上,t(x)单调递增,所以当x=2时,t有最小值,所以实数a的取值范围是.故答案为:【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围.15、2##【解析】由题意可知一月份到十二月份基站个数是以3为首项,0.2为公差的等差数列,根据等差数列求和公式可得答案.【详解】一月份全国共建基站3万个,2月全国共建基站万个,3月全国共建基站万个,,12月全国共建基站万个,基站个数是以3为首项,0.2为公差的等差数列,2020年这一年全国共有基站万个.故答案为:49.2.16、;【解析】根据相切可得圆心到直线距离即为圆的半径,利用点到直线距离公式解出半径,即可得到圆的方程【详解】由题,设圆心到直线的距离为,所以,因为圆与直线相切,则,所以圆的方程为,故答案为:【点睛】本题考查利用直线与圆的位置关系求圆的方程,考查点到直线距离公式的应用三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)根据离心率为可得,把代入方程可得,又,解方程组即可求得方程;(2)设直线的方程为,整理方程组,求得,及参数的范围,由斜率公式表示出,结合直线方程和韦达定理整理即可得到定值.试题解析:(1)由题意,可得,代入得,又,解得,,所以椭圆的方程为.(2)证明:设直线的方程为,又,,三点不重合,∴,设,,由得,所以,解得,,①,②设直线,的斜率分别为,,则(),分别将①②式代入(),得,所以,即直线,的斜率之和为定值考点:椭圆的标准方程及直线与椭圆的位置关系.【方法点睛】本题主要考查了椭圆的标准方程及直线与椭圆的位置关系,考查了方程的思想和考试与运算能力,属于中档题.求椭圆方程通常用待定系数法,注意隐含条件;研究圆锥曲线中的定值问题,通常根据交点与方程组解得对应性,设而不解,表示出待求定值的表达式,利用韦达定理代入整理,消去参数即可得到定值.18、(1);(2)【解析】(1)由实轴长求得,再由离心率得,从而求得得双曲线方程;(2)直线方程与双曲线方程联立方程组,消元后应用韦达定理求得中点坐标,代入圆方程可求得值【小问1详解】由已知,,又,所以,,所以双曲线方程为;【小问2详解】由,得,恒成立,设,,中点为,所以,,,又在圆x2+y2=17上,所以,19、(1)2(2)或【解析】(1)易知两直线的斜率存在,根据,由斜率相等求解.(2)分和,根据,由直线的斜率之积为-1求解.【小问1详解】由直线的斜率存在,且为,则直线的斜率也存在,且为,因为,所以,解得或2,①当时,由此时直线,重合,②当时,,此时直线,平行,综上:若,则实数m的值为2【小问2详解】①当时,直线斜率为0,此时若必有,不可能.②当时,若必有,解得,由上知若,则实数m的值为或20、(1)证明见解析(2)【解析】(1)根据导数判断出函数的单调性求出其最大值,即可证出;(2)由(1)知:,再变形即可得出小问1详解】因为,∴在上单调递减,又因,故当时,;当时,,所以在上单调递增,在上单调递减,所以.【小问2详解】由(1)知:,两边同乘以a得:,∴,即.21、(1)(2)【解析】(1)由离心率公式以及椭圆的性质列出方程组得出椭圆的方程;(2)联立直线和椭圆方程,利用韦达定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论